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disease (PD), a neurodegenerative disease manifested 
by tremor and slowness of movement. Computational 
modeling of the basal ganglia circuits in the brain has 
helped to point out why many PD patients suffer from 
problems with learning new tasks, even after being 
treated. The next disease we explore is stroke, looking 
at models of the changes that occur following these 
major brain ablations. We look at how the death of 
neurons shifts the dynamics of cortical neurons, which 
helps reduce loss of function. Additionally, models of 
the effect of physiotherapy on patients with stroke made 
interesting predictions with implications for patterning 
physical therapy after stroke. Finally we discuss compu-
tational modeling of schizophrenia. Further under-
standing of this devastating illness may help us shed 
light on the enigma of thought disorders and through 
this, better understand the processes of normal 
cognition.

For the reasons given above, this chapter will focus 
on multiscale modeling. However, we will say relatively 
little about high-level approaches that describe disease 
in terms of chaotic dynamics (Glass and Mackey, 1988). 
Although these and other top-down approaches have 
provided a number of important insights, we have 
chosen to focus on multiscale modeling because of its 
potential clinical applicability through new approaches 
to developing pharmacological treatments.

23.1  Epilepsy

23.1.1  Pathophysiology of Seizures  Seizures are 
episodes of disturbed brain function due to abnormal 
prolonged neuronal firing. Seizures can cause simple 
changes in attention and behavior or a complete dis-
ruption of brain activity with loss of consciousness and 
abnormal movements of the limbs. The location of a 
localized (focal) seizure determines the brain function 
that is affected. For example, if the seizure location 
involves the motor cortex, then the disturbance of func-
tion will be in the form of involuntary jerking move-
ments of the body part innervated by that area of the 
cortex. If the seizure location involves the sensory 

One major approach to computational neuroscience 
utilizes multiscale modeling, covering molecular, cel-
lular, and network phenomena as well as higher levels 
up to cognition and behavior. With growing apprecia-
tion of the enormous complexity of genome, proteome, 
and other -omes, multiscale modeling is becoming 
increasingly important in clinical medicine. These com-
plexities are even more apparent when confronting 
brain diseases, dysfunctions of the most complex organ, 
an organ with manifestations that range up into the 
realms of cognition and behavior.

Different tools, used to explore different aspects of 
the brain, obtain data at different scales. Some of these 
are used only in experimental animals, such as visualiza-
tion of intracellular calcium activation waves. Others 
can be used both experimentally and clinically in 
humans, such as electrophysiological recordings and 
functional or structural neuroimaging.

Additionally, different disease phenomena cover a 
range of temporal and spatial scales. This is true for 
both pathogenesis and pathophysiology (describing the 
mechanisms of how disease occurs) and treatment, 
whether it is pharmacological, behavioral, or surgical. 
Disease can start at a molecular or cellular level and 
then produce effects all the way up across different 
temporal and spatial scales, till reaching the systems 
level of the whole organism. Alternatively, disease may 
start at a high level (e.g., traumatic brain injury and 
stroke) and produce alterations at cellular and molecu-
lar levels. Similarly, bottom-up and top-down approaches 
to treatment may be used simultaneously. For example, 
drug therapy for psychiatric diseases is applied to 
molecular targets in concert with behavioral or cogni-
tive therapy that is aimed at altering the function of 
brain maps and brain circuitry.

We will discuss four brain disorders. We start with 
epilepsy, arguably the most dynamically simple of brain 
diseases. We will discuss how computational neurosci-
ence has aided in exploring the predictability of occur-
rence of seizures, and how it helped in investigating 
factors related to network excitability that may predis-
pose someone to seizures. We then move to Parkinson’s 
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of diseases known as channelopathies (diseases of the 
channels) consists of mutations affecting the structure 
of the ion channels. This results in changes in their 
conductance, either increasing or decreasing it. The 
effect of such changes on neuronal excitability depends 
on the role of the particular channel in membrane 
depolarization/hyperpolarization. Another example is 
the effect of chronic alcohol (ethanol) use on GABAA 
receptors. Alcohol binds to the GABAA receptor 
complex, which is a chloride channel, augmenting its 
function and increasing the influx of chloride ions, 
resulting in inhibition of neuronal firing. Chronic 
alcohol exposure reduces GABAA-receptor-mediated 
inhibition (Kang et al., 1996). Therefore, abrupt cessa-
tion of alcohol intake following chronic alcohol use can 
result in neuronal hyperexcitability with resultant 
seizures.

Abnormalities of network architecture have also been 
reported in epilepsy. Some cases of seizures can’t be 
controlled with medications. In these cases, surgery is 
done to attempt to remove brain tissue that has been 
identified as the focus generating the seizure. Examina-
tion of the brain tissue removed reveals abnormalities 
of network architecture in humans. Similar abnormali-
ties are also seen in animal models of epilepsy. These 
changes include sprouting of new fibers to make atypi-
cal connections, as well as the presence of cells in 
abnormal locations (Sutula et al., 1989; Parent et al., 
1997).

23.1.2  Stochastic and Deterministic Modeling   
Both stochastic and deterministic modeling have their 
role in investigating questions related to seizures and 
epilepsy. Underlying randomness may be real, as in the 
case of random opening and closing of individual ion 
channels. However, stochastic modeling is also often 
used when a system is too complex to consider model-
ing the underlying details, or when a system is subject 
to vagaries that cannot reasonably be modeled. This 
randomness is only apparent, due to incomplete infor-
mation or due to sensitivity to initial conditions as in 
chaotic systems. Stochastic models are therefore helpful 
even in deterministic systems, capturing irreducible 
complexity that may determine specific aspects of epi-
lepsy, such as the timing of seizures. For example, sei-
zures are known to be more likely to occur after a 
night’s sleep has been missed. Since we do not know 
exactly how this missed night’s sleep is affecting the 
brain, it is not feasible to model all the details that could 
be affected. Such phenomena could be modeled using 
stochastic models.

The enormous dynamical complexity of the brain, 
like its structural complexity, can be considered as a set 

cortex, then it will present as abnormal sensations in 
the body region represented in that area. Generalized 
seizures involve the whole brain and result in loss of 
consciousness. When seizures occur repeatedly without 
provocation, the disease is called epilepsy. Usually, the 
abnormal firing during seizures will stop after a period 
of time, and so the symptoms will stop, too. However, if 
the symptoms persisted for a long period of time, it is 
called status epilepticus.

A common seizure presentation is the generalized 
tonic–clonic seizure. Tonic refers to sustained muscular 
contraction while clonic refers to alternating contrac-
tion and relaxation of muscles. During a generalized 
tonic–clonic seizure, the patient suddenly loses con-
sciousness, followed by a generalized contraction of  
all body musculature for around 10–20 seconds. The 
patient’s body becomes rigid, sometimes with arching 
of the back and neck (tonic phase). This is followed by 
alternating contraction and relaxation of body muscu-
lature (clonic phase), resulting in rhythmic recurrent 
movements of the limbs and body, known as convul-
sions. Convulsion frequency then decreases gradually 
until the seizure ends over a period of 1 to 2 minutes. 
If the seizure instead continues over many minutes,  
this is status epilepticus, and it is a life-threatening 
condition.

Multiple elements at different scales are involved in 
the pathophysiology of epilepsy. The occurrence of sei-
zures is related not only to increased excitability of 
individual neurons but also to altered neuronal dynam-
ics within the network. Multiscale modeling provides a 
method to meet the challenge of understanding how 
these many elements interact to produce the disorder, 
assimilating different areas of neuroscience, ranging 
from neurogenetics and ion channel dynamics to brain 
imaging, electroencephalography (EEG), and behav-
ioral assessments. Because the presenting “behavior” (a 
convulsion) is extremely simple relative to motivated 
behaviors, the correlation between basic science and 
clinical phenomenology is closer in epilepsy than in 
other brain disorders. There has therefore been more 
success in linking molecular and cellular pathophysiol-
ogy to clinical symptoms and signs in this disease. Mod-
eling allows us to explore the effect of changes taking 
place along one or more of these space-time scales on 
the generation of network spontaneous repetitive 
activity.

The pathology responsible for the occurrence of sei-
zures is rarely limited to one structure. The pathology 
can be in any structure ranging from the ionic channels 
within the neuronal membrane, going all the way up  
to the connectivity within a neuronal network or the 
connectivity between networks. For example, a group 
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equations which depended on calcium, potassium, and 
leak currents:

	
dV
dt

V V V

V V Z

g m g W

g

i
i i i i

K

L i
L

inh i

ca K= − − − −

− − + −

∞( ) ( )

( )

1

1 α
	 (23.1)

where V is the voltage of the lumped pyramidal cell 
population and gca , gK , and gL are the total conduc-
tances for calcium, potassium, and leak channels, 
respectively. Wi  is the fraction of open potassium chan-
nels in the lumped pyramidal neurons. m∞ is the frac-
tion of open calcium channels and is voltage dependent. 
ViK  is the N ernst equilibrium for potassium at node i 
while V L is for leak potential. αinh is the inhibitory 
synaptic strength on the lumped pyramidal neurons, 
while Zi is the voltage of lumped inhibitory population 
at module i. The lumped inhibitory population was 
modeled similarly.

Activity spread in the model took place at different 
timescales based on different mechanisms. On a fast 
timescale, the activity of a module projected to other 
modules. At a slower timescale, activity results in 
increased extracellular potassium level, which then dif-
fused to nearby neuronal groups. High extracellular 
potassium depolarizes the neurons, bringing them 
closer to threshold for firing, hence more excitable. 
The Nernst equation describes how different ion con-
centrations across the cell membrane creates the “bat-
teries” that drive membrane electricity. Depolarization 
of the membrane with high potassium is then due to a 
shift of the potassium N ernst potential—To take that 
into account, ViK , in the second term of equation 23.1, 
was calculated to depend on the activity in the neigh-
boring locations V j :
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The tint parameter would determine the duration 
before the activity is transmitted from one group to 
another. A short tint allowed the immediate synaptic 
effect to be more influential. A long tint emphasized the 
effect of diffusion.

Exploring the range of values of tint revealed two 
points of bifurcation (see chapter 3, “Neurons and  
Neuronal N etworks as Dynamical Systems”). Below a 
certain value, all of the modules in the network would 
fire together, producing a seizure. Above that value, the 

of subsystems. The existence of widespread distinct 
oscillatory frequencies in the EEG (see chapter 4, 
“Neural Rhythms”) suggests that dynamical subsystems 
are detectable even at the highest scale. Hence, it has 
been proposed that the enormous dimensionality of  
the brain produces trajectories that lie in much lower-
dimensional subspaces that can then be modeled  
by equivalent low-dimensional dynamical systems.  
Following this hypothesis, low-dimensional mean-field 
models (also called neuron population models or 
lumped models) have been widely utilized to simulate 
seizures.

These models look at the overall dynamics of a large 
ensemble of neurons—the lump. Depending on the 
model, this neural lump could be interpreted to be a 
cortical minicolumn, a column, a Brodmann area, a 
thalamic nucleus, and so forth. Alternatively, a lump 
could be a pool of similar neurons, typically an inhibi-
tory pool coupled with an excitatory pool. These models 
have an advantage of simplicity compared to detailed 
neural-level modeling, making it is easier to simulate 
multiple brain regions.

Seizure spread is a clinically significant phenome-
non, affected by multiple factors. Seizures can spread 
in a series of stages: a focal seizure with secondary gen-
eralization. For example, in temporal lobe epilepsy, a 
patient may experience “auras,” unusual feelings such 
as déjà vu (a sense of familiarity to an unfamiliar situa-
tion), jamais vu (the opposite of déjà vu, a sense of 
unfamiliarity to familiar situations), or fear, at the 
beginning of abnormal neural firing in the temporal 
lobe. These are then followed by loss of consciousness 
as the wave of abnormal neuronal firing spreads broadly 
into the neocortex. Alternatively, a seizure can appear 
to arise suddenly in all areas, a primary generalized 
seizure. For example, in absence epilepsy, a classical 
generalized epilepsy usually seen in children, the child 
suddenly stops whatever he or she is doing, stares ahead, 
and becomes unresponsive for about a minute. Although 
seizure spread in generalized epilepsy occurs so quickly 
as to appear to be simultaneous across brain areas, 
there is evidence that generalized epilepsy instead 
involves very rapid spread.

23.1.3  Modeling N euronal Populations  To 
investigate some of the mechanisms playing a role in 
the spread of a seizure, Larter et al. modeled the CA3 
region of the hippocampus (Larter et al., 1999). The 
model consisted of connected modules, with each 
module consisting of a lumped excitatory population 
and a lumped inhibitory population. The excitatory 
population activation was described by differential 
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Compared to small-world networks, networks with hier-
archical topography showed more limited activity 
spread with longer duration. In the case of hierarchical 
networks, the connections between clusters provided 
checkpoints of activation before activity could spread 
across the rest of the network. This suggested that the 
pace of activity spread in cortex might be limited by the 
delay in activation of individual columns or local areas 
before activity can spread further. In this model, there 
were no inhibitory connections, which shows that the 
topography of network can limit the spread of seizures 
even in the absence of inhibitory connections. The 
visual system has long been considered to be hierarchi-
cal, but the macaque data on which this interpretation 
has been based has been called into question lately by 
studies that identify a denser pattern of connectivity. 
Meanwhile human imaging data has suggested to some 
groups that there may be considerable small-world con-
nectivity among some areas of the brain. Therefore, 
there remains considerable controversy as to the domi-
nant pattern of connectivity of the connectome.

While the prior study emphasized seizure spread in 
cortex, other studies have looked at the dynamics of 
connections between cortex and subcortical structures 
such as basal ganglia and thalamus. Suffczynski et al. 
(2004) identified two attractors in a lumped study of 
interacting cortical and thalamic populations. Both the 
cortical and thalamic modules consisted of intercon-
nected excitatory and inhibitory populations. Projec-
tions between cortex and thalamus were excitatory and 
projected onto both populations in the other area. The 
behavior of the model was assessed by evaluating mean 
activation of the pyramidal (excitatory) cell population 
of the cortical module.

The resulting system dynamics could maintain physi-
ological activity corresponding to a low-amplitude 
attractor. Alternatively, a pathological pattern of ictal 
(seizure-like) activity was produced when dynamics 
switched over to a high-amplitude attractor. The physi-
ological pattern demonstrated spindle-like oscillations 
of ~11 Hz frequency, which waxed and waned in ampli-
tude. The pathological pattern showed high-amplitude 
oscillations of frequency ~9 Hz, which resembled seizure 
activity (figure 23.1). Transition from the normal  
nonseizure state to ictal activity occurred when the 
barrier between these two attractors was overcome. This 
occurred as the threshold for inhibitory synaptic activa-
tion was reached, augmenting oscillation amplitudes. 
Gaussian white noise introduced into the system could 
produce transitions from the physiological to the patho-
logical attractor and back. In the absence of noise, the 
deterministic system remained in the physiological 
state.

network entered a periodic mode, with the modules 
firing out of phase. This mode was spatially dependent, 
such that closer modules fired at closer phase than 
those farther away. At the second point of bifurcation, 
the network entered a mode of random firing. The 
authors also explored the effects of inhibition on the 
firing synchronicity by a variable which governed the 
ratio of current going into excitatory and inhibitory 
modules. L owering the input to inhibitory interneu-
rons relative to excitatory interneurons produced less 
variability and so made the network more vulnerable to 
seizure-like activity.

Another factor which influences the spread of sei-
zures is network connectivity. A graph theoretic 
approach can be used to describe how neurons in a 
network (or modules in a network of populations) are 
connected. In graph theory, random networks and 
small-world networks are the most heavily studied. In a 
random network, each node has the same probability 
of being connected to any other node. The notion of a 
small-world network comes from social networking and 
other applications where there are special nodes, called 
hubs, which have more connections to other nodes. In 
the case of social networks, these hubs are people with 
lots of friends. In the case of the airport system, these 
hubs are locations with flights to many other locations. 
In either case, the hubs provide short paths that connect 
any two nodes (two people or two airports) in the 
system.

Another arrangement is hierarchical connectivity. In 
this arrangement there are clusters of hubs: a cluster is 
a group of hubs which are heavily interconnected.

In the cerebral cortex, neurons self-organize via syn-
aptic plasticity, producing network organizations that 
are far from random. However, they can be generally 
described by graph theory. Cortex is suborganized into 
subnetworks or modules, with more connections within 
the module (intramodular) than between the modules 
(intermodular), suggestive of hierarchical connectivity. 
The connections at various levels are described in terms 
of connectomes at various levels, within the column, 
between columns (within area), between areas (within 
system), and between systems (Sporns et al., 2005; 
Yoshimura et al., 2005).

Kaiser et al. (2007) compared seizure spread in three 
types of connectivity: random, small world, and hierar-
chical. The three types of networks were all of the same 
size: 1,000 vertices (nodes) and 12,000 edges (connec-
tions). Spread of activity was measured as the time to 
full activation of the whole network.

Spread across the random network topography was 
the most rapid. Network activity persisted for a longer 
duration in small-world and hierarchical networks. 
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Neural-level models may have both deterministic and 
stochastic aspects. L ocal neural activity is represented 
by differential equations, while stochastic driving is 
used to represent the variations in external activity pat-
terns from other brain areas. Neural-level models have 
been used to compare the relative effects of intrinsic 
neuronal excitability and synaptic connectivity in the 
genesis of epileptiform activity. In these models, simpli-
fication occurs not only from the omission of molecular 
details but also from simplifications of connectivity due 
to the fact that there is little that is known about the 
wiring diagram (the microconnectome) among indi-
vidual neurons.

As an example, we present here a simplified network 
consisting of excitatory, inhibitory, and driver neurons 
which was used to investigate the transition from normal 
activity to a clonic seizure (Lytton and Omurtag, 2007). 
The driver neurons drove the network through their 
spontaneous firing. Drivers were connected to both 
excitatory and inhibitory neurons via different types of 
excitatory and inhibitory synaptic connections. Indi-
vidual neurons in this model are event-driven firing 
units, which fire at a point when the voltage state vari-
able is driven above threshold. Intrinsic properties 
including the threshold, refractory period, and after-
hyperpolarization potential were added to these units 
through a series of rules.

Two patterns of firing were noted in the network: 
low-amplitude activity, and prolonged continuous 
firing, suggestive of tonic epileptiform activity. It was 
observed that altering the firing timing of the driving 
neurons, without changing any of the other parameters, 

The importance of noise in switching between attrac-
tors in this type of model suggests why there might  
be limitations in the predictability of seizures. Two  
scenarios suggest themselves. If dynamical changes  
take place gradually—a physiological attractor evolving 
gradually into an ictal attractor—then seizures may be 
predictable. Such a gradual change is hypothesized to 
occur in temporal lobe epilepsy. By contrast, the dynam-
ics of figure 23.1 shows a jump from one attractor to 
another. Here, the two attractors (ictal and normal) 
coexist, but are separated from each other by a barrier 
which is lower in patients suffering from epilepsy, 
making it easier for the brain state to jump from one 
attractor to the other. This would explain cases where 
the onset of seizures can happen very abruptly, as in the 
case of absence seizures. Additionally, since such jumps 
happen randomly, it becomes impossible to predict sei-
zures far in advance. Note that in this case, the dynam-
ics of the energy barrier will also play a role and could 
provide the possibility of prediction of periods of 
greater susceptibility.

23.1.4  Neural-Level Modeling  Regardless of the 
level of detail chosen, all models necessarily contain 
much simplification. Contrasting with the lumped 
models described above, more detailed neural-level 
models incorporate individual neurons but still must 
simplify in many different ways. For example, molecular 
interactions are usually not directly simulated. Although 
these can be helpful to provide direct application  
to neuropharmacology, simulation using simplified 
neurons can also be helpful in this respect.

Figure 23.1  A lumped model of absence epilepsy. (a) Under deterministic conditions, trajectories (blue line) are stable within 
their own attractors: the inner attractor represents physiological activity while the outer attractor represents epileptic activity. 
The red line is the barrier (separatrix) between the attractors. (b) Trajectory jumps repeatedly between attractors as transitions 
from one attractor to the other are driven by noise. From Lopes Da Silva et al. (2003).
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computational modeling will aid in our understanding 
of the interacting and emergent effects of the different 
state variables at different scales. This would point 
toward influences that play a bigger role in the phe-
nomenon, enabling research on therapies to focus  
on these particular state variables at these particular 
scales.

23.2  Parkinson’s Disease

Parkinson’s disease is one of several neurodegenerative 
disorders which affect a particular population of 
neurons whose degeneration deprives the rest of the 
brain of a needed projection or needed neuromodula-
tor. In the case of PD, this population is the neurons  
of the substantia nigra pars compacta (SNc) in the 
brain stem. These neurons release the neurotransmit-
ter dopamine and project strongly to the basal ganglia. 
Their degeneration results in reduction of the dopa-
mine levels in the basal ganglia, producing a group  
of symptoms which are initially primarily motoric—
movement problems. The disease then progresses to 
affect non-motoric brain functions as well. The major 
symptoms include difficulty initiating movements, 
slowed movement (bradykinesia) with concomitant 
slowed thought (bradyphrenia), increased muscle  
tone around the joints (rigidity), resting tremors, and 
difficulty coordinating bodily movements (postural 
instability).

The initial treatment of PD involves exogenous 
replacement of missing dopamine. This can be done by 
either providing a dopamine precursor (L-dopa) which 
gets converted into dopamine in the brain, or providing 
agonist drugs to activate dopamine receptors. Initially, 
this therapy produces improvement of several aspects 
of the disease, for example, reduced rigidity, faster 
spontaneous movements, and reduced tremor. Interest-
ingly, there is sometimes an initial dramatic response to 
replacement, with the patient reporting a seemingly 
miraculous return to normal function. This is impres-
sive since the original phasic release of the dopamine 
has been replaced by a continuous tonic dopamine 
“bath.” Unfortunately, later on, the symptoms will start 
appearing again despite the treatment and then may be 
more severe than they otherwise would have been, 
perhaps because of downregulation of dopamine recep-
tors (Hermanowicz, 2007). Such downregulation would 
be an example of homeostasis—maintenance of activity 
equilibrium in the face of change. In this case the 
abnormally high, continuous level of dopamine would 
reduce the sensitivity of the neurons to dopamine by 
reducing (downregulating) the number of dopamine 
receptors.

resulted in switching between these two patterns. 
Another finding of interest was that increasing the 
excitability of individual neurons did not necessarily 
result in increasing the excitability of the whole network. 
This was because the network excitability depended not 
only on the individual neurons but also on the dynam-
ics between the neurons.

Because neural-level details were used, it was possible 
to grossly model the effect of anti-epileptic medications. 
One hypothesized molecular mechanism for anti-
epileptic medications is blocking voltage-dependent 
sodium channels which will reduce the tendency of the 
neuron to spike (Xie et al., 1995). Using the model, this 
effect was simulated by simply reducing the excitability 
of the individual cells by reducing the number of spikes 
per burst for each unit. This resulted in reduction of 
the duration of each activation at the neural level but 
with no effect on the background activity at the popula-
tion level. N ote the similarity of pattern between the 
two field potentials (blue, untreated; red, treated) in 
figure 23.2. Note also that the tonic period of pathologi-
cal activity (arrow) is eliminated in the treated model. 
Therefore, the tonic seizure was removed by treatment 
without affecting baseline activity.

When a clinical phenomenon is controlled by a  
large number of variables, as in the case of epilepsy, 

Figure 23.2  Effects of anti-epileptic medication. Lines show 
field potential generated by the activity of a set of expressor 
neurons (the excitatory neurons) (blue, without medication; 
red, with medication). Raster plot for the firing of different 
neuronal subpopulations (I, inhibitory; E, expressor; D, drive) 
with medication. Each point represents the firing of one cell 
in the network. The blue (untreated) trace dips at the time 
of the seizure (arrow); anti-epileptic medication prevented 
this from happening, without affecting baseline dynamics of 
the network. Modified from Lytton and Omurtag (2007).
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The basal ganglia circuitry has been conceptualized 
as instantiating Go and No-go circuits.

GPi/SNr inhibits thalamus. Therefore, inhibition  
of GPi/SNr results in disinhibition of thalamus (Go 
signal). Stimulation of GPi/SNr results in inhibition of 
thalamus (No-go signal) (Chevalier and Deniau, 1990). 
So stimulation of Dl cells in striatum (which inhibits 
GPi/SNr; direct pathway) results in a Go signal for a 
task to be performed. Stimulation of D2 cells in the 
striatum (which disinhibits GPi/SNr through globus 
pallidus externa [GPe]; indirect pathway) results in a 
No-go signal: the task is less likely to be performed. 
Presumably, the No-go signal is not guaranteed to always 
override the Go signal generated. Since D2 receptors 
have higher affinity for dopamine than Dl receptors 
(Richfield et al., 1989), dopamine depletion in PD 
results in D2 receptors’ being more active, which causes 
the indirect pathway (responsible for the No-go signal) 
to be more active.

The basal ganglia is also involved in reinforcement 
learning (RL). This is another place where modeling 
has been particularly helpful (see chapter 12 for an 
extended exposition) since learning theory is an impor-
tant focus of computational neuroscience. RL  takes 
place through variation in phasic release of dopamine. 
Phasic bursts of dopamine are related to receiving 
unexpected reward (positive feedback, which results in 
reinforcing the behavior). In contrast, phasic dips of 
dopamine are related to not receiving an expected 
reward (negative feedback, resulting in reduction of 
behavior). Bursts and dips follow positive and negative 
feedback based on prediction error. This is part of the 
reason why patients suffering from PD suffer from 

23.2.1  Anatomy and Function of Basal Ganglia 
The basal ganglia consists of different nuclei and are 
divided anatomically into striatum, the major input 
portal to the basal ganglia, and globus pallidus, the 
output route. (See figure 23.3, and also chapter 22, 
“Integrative Functions of the Corticostriatal System.”) 
The striatum receives inputs from multiple cortical 
areas and is further subdivided into caudate nucleus 
and putamen. In primates, the caudate nucleus receives 
cortical input from the prefrontal cortex while the 
putamen receives inputs from the somatosensory and 
motor cortices. The main cells in the striatum are GAB-
Aergic neurons—medium spiny projection neurons—
that project to the globus pallidus interna (GPi) and 
substantia nigra pars reticulata (SNr) but not to SNc, 
the site of dopamine production. The GPi and SNr are 
main output pathways and also have GABAergic projec-
tion neurons. These areas convey signals from the stria-
tum to the thalamus and thence back to cortex. This 
circuit therefore provides a cortico–striato–pallido–
thalamo–cortical loop. N ote that the primary projec-
tions pathways within and from striatum are GABAergic 
and therefore inhibitory; this differs from cortex and 
thalamus where the major projections are glutamater-
gic, excitatory projections. SNc and the neighboring 
ventral tegmental area (VTA) are the dopaminergic 
areas that provide projections to striatum (Gerfen and 
Bolam, 2010). An additional level of circuit complexity 
arises due to the existence of at least two major classes 
of striatal cells, D1 striatal cells and D2 striatal cells, 
which have two different types of dopamine receptors 
(D1 and D2) with very different cellular effects (Rich-
field et al., 1989).

Figure 23.3  Schematic illustration for basal ganglia connec-
tions, showing the cortico–striato–pallido–thalamo–cortical 
loop. Premotor/prefrontal cortex projects to the striatum. D1 
cells send inhibitory projections to globus pallidus interna 
(GPi)/substantia nigra pars reticulata (SNr) (direct pathway), 
while D2 cells send inhibitory projections to globus pallidus 

externa (GPe), which projects to GPi/SNr (indirect pathway). 
GPi/SNr then projects to the thalamus, which projects back 
to the cortex. Substantia nigra pars compacta (SNc) and 
ventral tegmental area (VTA) have modulatory dopaminergic 
projections to striatum; VTA also modulates cortex directly. 
From Frank (2005).
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by cortex selects certain circuits for ongoing activation. 
Meanwhile, inhibitory signals to GPi/SNr arise from  
the GPe, which receives inhibitory signals from D2  
striatal cells (control circuit). This is, of course, a highly 
simplified model (Bevan et al., 1998; N ambu et al., 
2002).

Given the complexity of basal ganglia circuitry, mod-
eling approaches have been particularly valuable. As in 
other systems, we look for a relatively clear-cut task that 
requires the use of this system. In the case of basal 
ganglia, one such task is the initiation of Go and No-go 
signals. After initiation, these signals are sent to various 
brain circuits responsible for different brain functions: 
walk or not, switch from one task to another, think 
about one thing or another. This task also makes sense 
in terms of the pathology of PD, in that these patients 

learning deficits and have impairment in tasks related 
to trial-by-trial error feedback.

Another way of viewing the basal ganglia is as a selec-
tion circuit and a control circuit, corresponding gener-
ally to the Go/No-go dichotomy mentioned above. 
GPi/SNr tonically inhibits thalamus. When a subset of 
GPi/SNr neurons themselves become inhibited by 
focused input from D1 striatal cells, activities mediated 
by that portion of the thalamus are allowed (figure 
23.4). GPi/SNr neurons are under continuous stimula-
tion by diffuse excitation from subthalamic nucleus 
(STN), and so those that are not inhibited from stria-
tum continue to provide inhibition to these other por-
tions of thalamus. This produces contrast between 
selected and non-selected neurons in the thalamus. In 
this way, focal activation of a group of D1 striatal cells 

Figure 23.4  Disinhibition of thalamus following stimulation 
of striatum (time on x-axis, spikes per second on y-axis). In 
the upper right plot, the arrow shows applying glutamate to 
stimulate striatum. The arrows correspond to the same point 
in time in the four plots. The increase in firing in the striatum 
corresponds to reduction of firing in the substantia nigra pars 

reticulata (SNr), which results in increase in firing in the 
thalamus (VM, ventromedial nucleus of thalamus) and supe-
rior colliculus (SC) through disinhibition. This increase in 
firing would send an activation signal to the cortex. From 
Chevalier and Deniau (1990).
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population in thalamus, which will in turn stimulate the 
corresponding cortical population.

Different levels of simulated tonic dopamine on both 
D1 and D2 cells were used to simulate healthy basal 
ganglia circuitry, PD pathology, and PD with excess 
dopamine during excessive dopaminergic therapy. 
Dopamine’s effect on synapses was modeled as follows:

	 I I Ii S
S ampa nmda

D∈ = + +Ω 1 11( )( )λ ,	 (23.4)

	 I I Ii S
S ampa nmda

D∈ = + +Ω 2 21( )( )λ ,	 (23.5)

where I i S
S
∈Ω 1 and I i S

S
∈Ω 2 are the currents in the soma of 

the i neuron that belongs to D1 (ΩS1) or D2 (ΩS2) cell 
populations in the striatum. I ampa  and I nmda  are the cur-
rents provided by excitatory synapses, mediated by 
AMPA and NMDA glutamatergic receptors, respectively. 
These receptors are involved in the classical driving of 
synapses, contrasted with neuromodulatory synapses 

find it difficult to initiate movements or to abruptly stop 
(festination). It could also help in explaining the per-
severation sometimes observed in these patients when 
they keep repeating certain phrases.

Similar to many clinical phenomena, PD crosses mul-
tiple spatial and temporal scales. As a disease process, 
PD starts at the cellular and molecular levels with 
degeneration of the neurons in the SNc, with the resul-
tant reduction of dopamine levels at the basal ganglia. 
However, the symptoms appear at the behavioral level, 
in the form of problems in motoric functions and in 
learning. Treatment takes place at a molecular level, the 
level of dopamine receptors, while the improvement of 
symptoms takes place at a behavioral level. Computa-
tional neuroscience is needed to bridge these spatial 
and temporal scales.

23.2.2  Modeling the Role of Dopamine in Selec-
tion  We give an example of an effort to explore the 
selection function of the basal ganglia circuitry and  
the role played by dopamine (Humphries et al., 2006). 
This study modeled five components of the basal ganglia 
circuitry: striatal D1 cells, striatal D2 cells, STN, globus 
pallidus (which represented GPe), and SNr (represent-
ing basal ganglia output). The leaky integrate-and-fire 
neurons within each of these structures were divided 
into three groups, corresponding to three different 
actions. Each group is connected to a corresponding 
group in each of the components, maintaining the 
topographic arrangement of fibers that is seen in  
the parallel loops that exist between striatum, GPe, 
GPi/SNr, thalamus, and cortex in the cortico–striato–
pallido–thalamo–cortical circuit (figure 23.5)

Cortical input to the striatum (D1 and D2 cell popu-
lations) and STN  was simulated using spike trains of 
different frequencies. This would correspond to saliency 
of a stimulus in real life, with the higher frequency 
representing a stimulus that has a higher salience. The 
stimulation protocol that was used to test action selec-
tion consisted of an input to group 1 at t = l second, 
followed by an input with a different frequency in group 
2 at t = 2.5 seconds. The stimulation was terminated at 
5 seconds. According to the action selection prediction, 
the basal ganglia model should be able to select a group 
at t = l, the beginning of the first stimulus. The model 
should then only switch the selection to the second 
group, presented at t = 2.5, in cases when the second 
group is more salient, represented as higher frequency 
firing in that group. Selection of a group was consid-
ered to have taken place when the firing rate of an SNr 
group dropped below a threshold. This was taken to  
be the case because, physiologically, reduced firing in 
one SNr population will disinhibit the corresponding 

Figure 23.5  Groups of neurons in the selection circuit. The 
circuit responsible for selection of action in the model con-
sists of the cortex, the D1 cells in striatum, subthalamic 
nucleus (STN), and substantia nigra pars reticulata (SNr). 
Each of those structures has three groups of neurons (black, 
gray, and white) corresponding to three different actions. 
Each group in each of the structures projects to the corre-
sponding group (only connections of the gray population are 
shown in details), except for STN  which projects diffusely 
(only the gray projections from STN  are shown). Modified 
from Humphries et al. (2006).
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then switched to the other group when the more sig-
nificant stimulus was introduced (the stimulus with the 
higher frequency). With low levels of dopamine (simu-
lating PD), neither signal selection nor switching took 
place (figure 23.6B). The firing rate of the correspond-
ing groups in SNr dropped slightly, but not sufficiently 
to indicate group selection. With excess dopamine (to 
simulate what happens with dopamine replacement 
therapy or dopamine agonists), switching becomes rare 
as competition between inputs results in selection of 
both first and second groups. With the introduction of 
the first stimulus, the group is selected. Then with intro-
duction of the second stimulus through a second group, 
the second group is also selected, with no de-selection 
of the first one (green diamonds in figure 23.6C).

The above results points to the nonlinear mode of 
action of dopamine. Reduction of dopamine (as in PD) 
would result in dysfunction because of limited ability to 
select responses to stimuli. High levels of dopamine 
(like what happens with overtreatment using L-dopa or 
dopamine agonists) would also result in dysfunction 
because of inability to respond to a more salient stimu-
lus presented after a less salient stimulus.

Here we have looked at some effects of dopamine  
on synaptic activation. Another related effect is the 

such as those for dopamine, which depend on input 
from the cortex. λD1 and λD2 are the tonic levels of 
dopamine on D1 and D2 receptors, respectively, ranging 
from zero to 1. To simulate physiological amounts of 
dopamine, both λD1 and λD2 were set to 0.3. To simulate 
PD, values were set to zero. They were set to 1 for the 
case of excess dopamine under the effect of excess 
dopamine therapy. From equations 23.4 and 23.5, this 
variation will result in changes in the synaptic current. 
So, in comparison to the physiological state, in the case 
of PD, the activating synaptic currents from the cortex 
(carrying the signal), would reduce firing of D1 popula-
tion and increase firing of D2 population. Both of these 
changes would disinhibit SNr cells (which receives 
GABAergic projections from Dl and GPe populations), 
increasing their firing and so the groups are considered 
not selected. In the opposite case, with excess dopa-
mine (with λD1 and λD2 set to 1), this will result in 
increased excitatory synaptic current to the D1 cells and 
reduction in those currents to the D2 cells. Both these 
changes will result in reduction of SNr firing (which is 
considered as selection).

The physiological model was able to exhibit action 
(group) selection (blue circles in figure 23.6A): the SNr 
group was selected when the first input was given, and 

Figure 23.6  The grids A, B, and C represents the behaviors 
of the models under normal, low, and high dopamine levels, 
respectively. Each point in the grid represents a simulation. 
The x-axis and y-axis represents the spiking in channels 1 and 
2, respectively. For each of the simulations, the model is pre-
sented with a stimulus along one channel, then with another 
more salient stimulus along the other channel. As seen in grid 
A (normal dopamine level), the stimulus with higher salience 
is selected (blue circles in the bottom-right and top-left 

corners of the grid). With low dopamine levels (as in PD, grid 
B), there is lack of selection of either group of neurons 
(crosses in the plot denoting “no selection”). With higher 
dopamine levels (grid C), there is competition, and switching 
takes place (yellow squares). With higher spiking rates, both 
channels are selected (dual selection, green diamonds).  
So, with high levels of dopamine, there is less switching and 
more dual representations of the channels. Modified from 
Humphries et al. (2006).
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In order to simulate PD pathology, three out of the 
four units representing SNc were silenced to form a “PD 
network.” This resulted in a lower tonic level of dopa-
mine, and also a smaller difference between the dopa-
mine burst and dip.

Intact and PD networks were given both tasks. PD 
networks showed more errors in both tasks in compari-
son to the intact networks. To simulate the medicated 
state, a network with higher dopamine input during the 
tonic, burst, and dip phases was modeled. The effect  
of medication was compared on the network in the 
probabilistic reversal task. In comparison to the intact 
network, the medicated network was more prone to 
errors in the probabilistic reversal task during the part 
that required reversal of acquired learning. This hap-
pened because the high levels of dopamine suppressed 
the No-go units and so impaired the network’s ability 
to learn N o-go representations during negative feed-
back, important to allow for learning reversal. This 
model was able to replicate the phenomenon of patients 
suffering from PD being prone to different types of 
error even when medicated.

As discussed, modeling can help in evaluating the 
effect that various levels of neurotransmitter can have 
on basal ganglia circuitry. Future modeling efforts will 
begin to look at the progression of PD by considering 
how alterations in dopamine levels over time will alter 
the expression of disease.

23.3  Stroke

23.3.1  Pathophysiology and Dynamics of Stroke 
The brain receives its blood supply through a network 
of blood vessels which supplies the brain in a pattern 
unrelated to the functions of the supplied areas. There-
fore, strokes can produce peculiar patterns of deficit 
through effects on multiple brain areas related by prox-
imity but not by functional interconnection. After the 
blood supply to a brain region stops, neurons suffer 
from reduction of oxygen and glucose supply. They 
become ischemic. If this continues for a prolonged 
period of time, the neurons start to die. A stroke devel-
ops when neurons die following the cessation or reduc-
tion of blood supply to a brain region. Note that such 
a region is determined by the blood supply, and has no 
relation to, for example, neuroanatomical regions in 
the sense of Brodmann areas.

The area surrounding the region where the blood 
supply is reduced, but where neurons have not yet  
died, is called the penumbra. The neurons within the 
penumbra show reduced metabolic and neural func-
tion and are sensitive to further insult either through 
further reduction in their metabolic supplies or through 

enhancement of synapses as part of RL, which we will 
explore in the next section.

23.2.3  Modeling Effects of Tonic and Phasic 
Dopamine  Another computer model investigated the 
effects of dopamine depletion and repletion on both 
tonic and phasic dopamine inputs (Frank, 2005). The 
model consisted of elements representing cue input, 
striatum, GPe, GPi (as the output port), thalamus, pre-
motor cortex (PMC, which projects to the output layer), 
and SNc (which supplied dopamine input to the stria-
tum). These elements consist of units that behave like 
point neurons, with rate coding. The striatum had a Go 
and a No-go column for each of two possible responses, 
giving a total of four columns of activation “units.” Each 
of the Go columns projected to GPi. Each of the No-go 
columns projected to GPe, which then projected to GPi. 
This way, based on competition in the level of activity 
of the units in each column in the striatum, GPi ended 
up with a level of activity which influenced the thalamic 
units in an inhibitory fashion. Thalamic units then  
projected to PMC units, which projected to the output 
element.

The model was used on two tasks. In the first,  
the network was presented with different cues in dif-
ferent combinations. Each cue had a probability to 
predict either “rain” or “sun.” There were two learning 
phases. One phase was dependent on tonic dopamine 
stimulation from the SNc (the “minus” phase). During 
this phase, the network was presented with cues, and 
based on a given cue and the synaptic weights, a 
response was picked up. No feedback was given about 
whether the response was correct or not. During  
the second phase (“plus” phase), feedback was pro-
vided based on the response. A correct response 
resulted in an increase of dopamine stimulation, a 
dopamine “burst.” This resulted in an enhancement of 
the Go signal and a reduction in the N o-go signal, 
encouraging the network to select that response when 
presented with a similar set of cues next time. An 
incorrect response resulted in a decrease in dopamine 
stimulation (“dip”), reducing the Go signal and 
enhancing the N o-go signal. The feedback modified 
the weights of the synapses from the input layer and 
from the PMC layer onto the striatum. Through this 
learning, the activation of the correct units of striatum 
was achieved.

The second task was a probabilistic reversal task. The 
model was presented with one of two cues and learned 
to associate one of two responses with each cue. Rever-
sal then took place, and the network had to learn to 
associate the same cue with the opposite response (i.e., 
unlearn the previous learning).
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one-layer recurrent model of MT which received con-
vergent inputs from a receptive layer representing lower 
visual areas such as V1 (Lytton et al., 1999). The MT 
layer had lateral connections, in the form of near excit-
atory and far inhibitory connections (a “Mexican hat” 
distribution of connections, but with no self-excitation; 
figure 23.7).

Simulations on this network demonstrated that a 
process of unmasking could explain expansion and 
contraction of the RFs (figure 23.8). Cells in the network 
provided near excitatory, and far inhibitory, lateral 
inputs. After ablation, these influences were lost, result-
ing in loss of both the local excitatory and the distal 
inhibitory connections that had originated from the 
ablated region. The loss of nearby excitatory cells had 
a minimal effect. However, the loss of the more distant 
inhibitory connections resulted in substantial increased 
activation (unmasking) such that receptive inputs that 
were previously unable to activate a given MT unit 
could now do so, having less inhibition to counter. This 
resulted in expansion of the R F. A secondary conse-
quence of this loss of inhibition was due to the disinhi-
bition of inhibitory cells. This secondary effect resulted 
in contraction of the RFs for the principal cells that now 
received augmented inhibition. Inputs that previously 
would have stimulated these cells to threshold were no 
longer capable of doing so. Such expansion and con-
traction in the R Fs represent an expanding wave of 
dynamical consequences resulting from the loss of pro-
jections from the lost neurons.

While the simulation was able to replicate both 
expansion and contraction of R Fs, the contractions 
seen were much less than those found in the experi-
mental animal model. This failure meant that there was 
a missing element, a missing piece in the model. This 

additional excessive excitation. This excessive excita-
tion, termed excitotoxicity, can occur either through 
synaptic activation or through nonspecific stimulation 
of glutamate receptors by glutamate released into the 
extracellular space from other damaged cells.

Cortical representations of different body regions are 
dynamic. They change in response to alterations of 
received stimulus characteristics. For example, exces-
sive stimulation of a body region will result in expansion 
of the sensory cortical area representing that body part 
(Buonomano and Merzenich, 1998). (See chapter 13, 
“Neural Maps: Their Function and Development.”) In 
contrast, decreased stimulation of a body part—for 
example, by surgical removal of a finger—results in 
diminishing the size of the sensory cortical region rep-
resenting the finger (Kaas et al., 1983). Following a 
stroke, changes occur in the other direction: the sensory 
organ is present, but the sensory cortical region repre-
senting that sensory organ is now missing. In order to 
understand changes following stroke, it is useful to 
think in terms of receptive fields (RFs) and projective 
fields. The RF of a neuron is the area from where the 
neuron is receiving its input (an area of a finger, in the 
above example, which will activate a particular neuron). 
A projective field is the set of neurons activated when 
a single location is stimulated, that is, the set of neurons 
onto which a particular location projects.

It is hypothesized that changes in the RFs of surviving 
cells may play a role in recovery following stroke: the 
function of the cells that are missing may be replaced 
in part by local cells with similar or overlapping R Fs. 
The alternative, but not mutually exclusive, hypothesis 
is that other remote areas of the brain take over func-
tions once handled by the ischemic area. The MT 
(middle temporal cortex, or V5) region which is 
involved in representing the motion of different targets 
in the visual field represents an interesting example. A 
lesion in the MT region in monkeys does not impair 
the monkey’s ability to see stationary targets but does 
impair its ability to track moving objects when they are 
present in the area of the visual field represented by the 
lesioned part (Wurtz et al., 1990). Following a lesion to 
the MT cortex of a monkey, changes take place imme-
diately within the RFs of remaining cells surrounding 
the ablated MT area. These surrounding cells would be 
comparable to the cells of the penumbra in a stroke. 
The changes occurring include both expansion and 
contraction as well as shifting of RFs. Expansion is often 
asymmetrical, with a tendency to expand primarily 
toward the lesion.

23.3.2  Modeling R Fs Changes  To investigate 
changes in R Fs, a model was developed that used a  

Figure 23.7  Lateral connections within the layer represent-
ing the middle temporal area. There are no self–self connec-
tions (connection strength = 0, at radius = 0). There are 
nearby excitatory connections and far inhibitory connections. 
From Lytton et al. (1999).
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(the cells receiving the far inhibitory input), making it 
more difficult for units from the input layer to stimulate 
these units. This now resulted in more pronounced 
contractions, more similar to those seen experimen-
tally. The mechanism of expansion and contraction of 
RF was the same in the simple model and the model 
with the disinhibited halo. However, the halo aug-
mented the effects of each mechanism.

While the changes described in the model occurred 
immediately, cortical networks are dynamic on different 
timescales. This suggests that overall RF changes would 
likely take place in two phases. The first phase involves 
the immediate changes in neuronal dynamics described 
in this model which were the immediate consequence 
of cell death, with loss of the various excitatory and 
inhibitory connections on neighboring cells. During 
the second phase, synaptic plasticity changes would take 
place through changes in the synaptic weights among 
the surviving neurons. These changes will follow a 
pattern that would be determined by the new dynamics 
which resulted from the first phase. Naturally, synaptic 
plasticity changes will also result in changes in neuronal 
dynamics, closing the loop between these two interact-
ing processes. Dynamic changes give rise to plasticity, 
and plasticity consists of structural changes that give rise 
to dynamic changes. Separating them into two phases 
is nonetheless justified by the vastly different time con-
stants for each of them. While the neural dynamic 

problem highlights the important role of failure (falsifi-
ability) in modeling—the inability to explain some 
aspect of reality spurs the experimental search for addi-
tional critical facts about the system. This also high-
lights a contrast between simulation modeling and 
traditional closed-form physics modeling. Falsification 
in simulation generally requires that a model be aug-
mented, whereas in closed-form modeling it may 
require that the model be entirely abandoned.

When the histology of the ischemic regions was 
looked at more carefully, it was found that there is 
reduced expression of GABAA receptors in the vicinity 
of stroke (Schiene et al., 1996), as well as increased 
excitability in these regions (Neumann-Haefelin et al., 
1995). This suggests the presence of a halo of disinhibi-
tion around the ablated area. This is consistent with the 
inhibitory interneurons being more sensitive to isch-
emia, and so more of them are affected. The presence 
of this halo suggested that the penumbra region would 
show differential effects on the various kinds of cells 
found in the region.

When this halo was included in the model, it resulted 
in augmentation of both expansion and contraction of 
the RFs. Excitatory cells in the disinhibition halo were 
excitable by the relatively weak stimulation coming 
from distantly converging inputs resulting in expansion 
of their R Fs. Also, the excessive activity in these cells 
produced increased inhibition in the inhibitory ring 

Figure 23.8  Unmasking can explain expansion and contrac-
tion of receptive fields (RFs) post-lesion. The top layer is 
middle temporal cortex (MT) while the lower one is Vl. 
Inputs from Vl activate MT. In the MT layer, the left half is 
ablated. This results in loss of inhibition onto the region in 
the middle (light gray hexagon in top layer). This disinhibi-
tion reduces the activity in the right-most dark gray hexagon. 
Since the middle light gray hexagon is no longer inhibited, it 

can be activated by previously subthreshold input from wider 
regions of Vl (RF expansion in the bottom layer, on the left). 
Similarly, since the dark gray hexagon now receives more 
lateral inhibition, its threshold has increased and so will 
respond to narrower regions of Vl that can provide supra-
threshold input (RF contraction in the bottom layer, on the 
right). From Lytton et al. (1999).
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which will then lead to increased synaptic strength  
with other neurons that are active. By purposefully acti-
vating specific pathways either by peripheral input 
(through physiotherapy) or cortical stimulation, one 
could produce desired synaptic connectivity to compen-
sate for lost pathways. Presumably, specific patterns of 
exercises currently used in physical therapy determine 
synaptic reorganization in the brain.

Understanding the events underlying the immediate 
and the synaptic plasticity phases of changes following 
stroke points toward pharmacological and nonpharma-
cological interventions (e.g., physiotherapy) to mini-
mize neuronal death after stroke (minimizing deficit) 
and promote synaptic plasticity (improving recovery). 
For example, it may be desirable to delay the onset of 
cortical reorganization to prevent formation of spuri-
ous connections caused by overexcited neurons of the 
ischemic penumbra. Or, an agent that can pharmaco-
logically erase long-term potentiation, such as zeta 
inhibitory protein (Shema et al., 2007), might be used 
to allow cortical reorganization to occur during a period 
of intensive physical therapy which has been postponed 
till after medical therapy and recovery occur.

Computer models for the recovery process which 
takes place with physiotherapy provide clinical predic-
tions. Subjects with a stroke affecting one hand will tend 
not to use it, and therapy may constrain the good hand 
to encourage the patient’s use of the impaired hand. 
Han and colleagues (Han et al., 2008; Schweighofer et 
al., 2009) developed a model of the recovery process 
which predicted a functional threshold, beyond which 
improved use of the affected limb would lead to greater 
spontaneous use. This would then provide a virtuous 
circle which would provide continued improvement 
without the need for further explicit rehabilitation 
strategies.

They modeled motor cortex in both hemispheres 
and produced a stroke on one side. Neural reorganiza-
tion in the motor cortex was modeled to include super-
vised, unsupervised, and reinforcement learning. The 
existence of the threshold could be explained by taking 
into account the complex interaction of learning 
dynamics across all three types of learning that were 
simulated. A subsequent study determined such a func-
tional threshold clinically (Schweighofer et al., 2009). 
An important result of comparing model with clinical 
reality was that not all patients showed the same effects. 
Overall, the threshold could be shown in the group, 
with most of the patients improving above that thresh-
old. Ideally, more detailed modeling could be used 
clinically to assess threshold for individual patients.

Modeling of the effect of ablation and stroke allowed 
the exploration of the dynamical changes that happen 

changes take place over the course of milliseconds, the 
synaptic plasticity changes take place over the course of 
hours to days.

Perception depends on neural activity, and stroke 
results in alterations in encoding. If the decoding strat-
egy leading to behavior were to remain unchanged, 
function would suffer. For this reason, full behavioral 
recovery will require changes in decoding strategy that 
match the alterations in encoding (see, e.g., N udo, 
2007).

To explore the effect of ablation on neural coding, 
the model was expanded so that input was represented 
as a stimulus with attributes of location, direction of 
motion, and speed. Also, the MT units (which respond 
to movements, with the attributes of direction and 
speed) were replaced with a set of units, each of which 
was assigned a preferred direction and speed. A winner-
take-all algorithm was used to interpret neural activity. 
(Other algorithms that could have been used to deter-
mine the characteristics of the stimulus are vector sum 
or vector average.)

Animal stroke models and clinical experience suggest 
that a stroke in the MT visual area will produce a behav-
ioral effect. In this case the effect would be a motion 
scotoma in the visual field: an area of the visual field 
with a perceptual deficit for moving target leading to 
underestimation of the speed of the target. This can be 
measured through measuring the lag of the eye move-
ments, or the reduction in pursuit speed during follow-
ing the target with the eyes. The model was able to 
reproduce this effect, producing underestimation of 
object speed within the region that corresponded to the 
ablated area.

Based on the model discussed, it is suggested that the 
expansion of the R F following ablation allows post-
lesion stimuli to be misprocessed (as evidenced by  
inappropriate post-lesion behavior) rather than not 
processed at all. In the absence of these expansions, a 
portion of visual space would lose its cortical represen-
tation entirely because it would not fall in the RFs of 
any live neurons. Immediate R F expansion might 
produce a “Band-Aid effect” that is important both to 
immediate preservation of function and to the eventual 
shift and spread of R Fs to fill the gap after cortical 
reorganization.

Hebbian synaptic plasticity suggests how physical 
therapies might improve functional recovery following 
stroke. According to this mechanism, synapses become 
strengthened when there is coincident activation of  
the presynaptic and postsynaptic neurons, and they get 
weakened when the activation of both neurons is not 
coincident. The model showed that stroke is likely to 
produce increased activation of a set of cortical neurons, 

8522_023.indd   686 6/10/2016   8:04:37 PM



PROPERTY OF THE MIT PRESS
FOR PROOFREADING, INDEXING, AND PROMOTIONAL PURPOSES ONLY

PROPERTY OF THE MIT PRESS
FOR PROOFREADING, INDEXING, AND PROMOTIONAL PURPOSES ONLY

23.4  Schizophrenia    687

schizophrenia, but it is the cumulative effect of these 
factors that finally causes schizophrenia to occur. Prog-
ress in understanding and treating schizophrenia has 
been slow, in large part because of this multifactorial 
nature. No one set of studies holds the key to under-
standing schizophrenia, and no one researcher is likely 
to master all of the disparate threads that need to be 
pulled together. Computer modeling has been pro-
posed as a technique that will eventually permit us to 
master this complexity.

Here, we focus on pathogenesis and look at one set 
of theories that has strong evidence from animal studies 
and neuropsychological testing: cognitive coordination 
(Phillips and Silverstein, 2003). According to cognitive 
coordination theory, different regions and networks of 
the brain are able to perform their function through 
coordinating their activities within themselves and 
between each other. Symptoms of schizophrenia arise 
because of failure of the coordination between brain 
networks (cognitive discoordination).

23.4.2  Schizophrenia and Oscillations  Oscilla-
tions, ubiquitous in the brain, have been hypothesized 
to provide the neural coordination that underlies cog-
nitive coordination (Bressler and Kelso, 2001). Oscilla-
tions within and between different brain networks may 
synchronize the firing of neuronal networks that are 
functionally related. Such synchronization has been 
hypothesized to underlie the “binding” of various attri-
butes of an object to create the conscious perception of 
a unified object. In the context of schizophrenia, this 
would then suggest anomalies in binding that could 
lead to the cognitive and perceptual disorders associ-
ated with this disease.

Ketamine, one of the chemical relatives to PCP 
(phencyclidine, or angel dust) is an N MDA receptor 
(NMDAR) antagonist that is used as an anesthetic. As 
we mentioned above, N MDA is one of the glutamate 
receptors responsible for excitatory activation of the 
postsynaptic cell. When ketamine, in subanesthetic 
dose, is given to nonpsychotic human subjects (those 
who do not suffer from schizophrenia or related disor-
ders), they start experiencing hallucinations, delusions, 
and thought process disturbances. When ketamine is 
given to patients with history of schizophrenia, it exac-
erbates and worsens their symptoms. Ketamine also 
produces changes in brain oscillations. In mice, these 
changes are an increase in the power of the gamma 
oscillations (30–100 Hz) and a decrease in the  
power of theta oscillations (3–12 Hz) (Lazarewicz et al., 
2010). In humans, EEG changes have been recorded  
in healthy volunteers under subanesthetic doses of  
ketamine. The changes were increased power of 

afterward, which play a role in recovery. We will now 
turn to investigating brain oscillations, their role in 
schizophrenia, and how modeling them can aid in 
pointing to targets for therapy.

23.4  Schizophrenia

23.4.1  Schizophrenia and Oscillations  We have 
left schizophrenia for last as it remains one of the most 
puzzling of brain diseases and also one of the most 
challenging for modeling since it primarily affects 
thought processing. While the prior diseases are con-
sidered neurological, schizophrenia is considered psy-
chiatric. This distinction reflects both historical and 
practical issues. Historically, schizophrenia was consid-
ered a disease of the mind rather than a disease of the 
brain. Hence, it was thought that it was a disease that 
could be cured by somehow replacing wrong thinking 
with right thinking, comparable to classical religious 
views of the origins of thought and behavior. N ow it  
has become clear that schizophrenia is in fact a brain 
disease and that any treatment will have to address 
problems in the brain as well as trying to ameliorate 
learned behaviors. However, since psychiatry is consid-
ered to deal more with symptoms of the mind, schizo-
phrenia is still treated by psychiatrists and in psychiatric 
settings. The dichotomy between neurology and psy-
chiatry remains important logistically.

Patients with schizophrenia present with symptoms 
that belong to one of three domains: positive, cognitive, 
and negative symptoms. “Positive” symptoms include 
hallucinations (usually auditory, but they could also be 
visual), delusions (false fixed beliefs that the patient 
holds strongly, which are not shared by others of the 
same culture), and disorganized thought processes 
(where the forms of thought and speech become dis-
rupted so that it is difficult to understand what the 
patient is trying to say or communicate). Cognitive 
symptoms include deficits of working memory (patients 
have difficulty holding information that is important to 
solve a task at hand, e.g., preparing a grocery list). 
Negative symptoms include lack of motivation and 
social isolation. Current available medications (anti-
psychotics) can control positive symptoms. However, 
the effects on improving cognitive and negative symp-
toms are still limited.

Different patients will manifest different combina-
tions of symptoms. It is now accepted that both etiology 
(the cause, the why) and pathophysiology (the mecha-
nism, the how) in schizophrenia are multifactorial.  
Etiologies include genetic susceptibility, intrauterine 
exposure to infections, and stressful life situations. No 
one of these factors is enough by itself to cause 
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cells that augmented their theta response. Removal of 
the basket cell population greatly reduced theta 
strength, demonstrating that basket cells contributed 
strongly to theta, as well as to gamma.

Single-cell voltage traces reflected the dominant fre-
quencies of basket cells and pyramidal cells. Individual 
OLM cells showed periodic firing on portions of the 
theta cycles after the recovery from MS inputs. The 
basket cell population fired at gamma frequency, but 
individual cells would only follow for 3–4 cycles at a 
time, and only at peak theta (figure 23.10D).

Ketamine blocks N MDA receptors. In the model, 
NMDA receptors are located on four locations: OLM 
soma, basket soma, pyramidal basal dendrite, and pyra-
midal apical dendrite. To simulate the blocking by ket-
amine at a particular site, conductance of NMDAR was 
set to zero at that site. Turning off all the NMDA syn-
apses in the model reduced activity in all cell types, 
resulting in significant reduction in power for both 
theta and gamma. This did not match the experimental 
data (gamma up, theta down). Because different NMDA 
receptor subtypes that are expressed on different cell 

gamma-band oscillations (40–85 Hz), and decrease in 
the power of delta-band oscillations (1–5 Hz) (Hong et 
al., 2009). Psychotic symptoms were found to be associ-
ated with similar changes in EEG power spectra 
(Uhlhaas and Singer, 2010). Based on this, treatment 
with subanesthetic doses of ketamine is used to produce 
an animal model for schizophrenia (or psychosis in 
general). The change in the power of different fre-
quency bands could be one of the mechanisms respon-
sible for generation of psychotic symptoms.

23.4.3  Modeling Changes in Oscillations  Hip-
pocampus and frontal cortex are two areas primarily 
affected in schizophrenia. Postmortem brain biopsies 
from patients who suffered from schizophrenia showed 
changes in hippocampal cytoarchitecture (Harrison, 
2004). To investigate how ketamine produces the 
observed changes in the power spectrum, a neural-level 
model of hippocampal circuitry was developed, consist-
ing of 800 pyramidal neurons, 200 inhibitory fast-
spiking basket cells, and 200 inhibitory slow-spiking 
oriens-lacunosum moleculare (OLM) cells. Theta drive 
from medial septum (MS) was simulated by providing 
periodic inhibitory input to OLM and basket cells. The 
connectivity of the network is shown schematically in 
figure 23.9. (See chapter 4 for other models of “Neural 
Rhythms.”)

Oscillations within the model were generated as pyra-
midal cells drove OLM and basket cells via both AMPA 
(short) and N MDA (longer) receptor activation. The 
OLM cells, in turn, inhibited the distal dendrites of 
pyramidal cells, while the basket cells inhibited the 
soma of pyramidal cells. Compared to the fast changes 
in the membrane potential of pyramidal somata caused 
by basket cells, dendritic filtering gave the OLM inputs 
longer time constants, allowing them to modulate pyra-
midal activity with a slower time course. Gamma genera-
tion has been grossly dichotomized as being due to 
interneuron network gamma (ING) or pyramidal inter-
neuron network gamma (PING) (See chapter 4, “Neural 
Rhythms.”). ING appeared to be the major gamma 
driver at the theta nadir (figure 23.10C), when pyrami-
dal cell population activation was minimal (figure 
23.10A). By contrast, during the theta upswing, gamma 
activity appeared to primarily emerge as a PING inter-
play, the pyramidal cells driving the basket cells which 
then coordinated population pyramidal cell activity 
through near-simultaneous basket cell inhibitory post-
synaptic potentials on pyramidal cell somata.

Basket cells were entrained to theta at two levels: 
directly by the MS inputs and indirectly via the periodic 
firing of the OLM-disinhibited pyramidal cells. The 
basket cells then provided feedback onto pyramidal 

Figure 23.9  Schematic representation of the network rep-
resenting the CA3 region of hippocampus. The network con-
sists of 800 pyramidal neurons (P), 200 oriens-lacunosum 
moleculare inhibitory interneurons (OLM), and 200 basket 
cells (B). The numbers near the synapses represent conver-
gence ratios, that is, number of inputs for an individual 
synapse: GABAA receptors (filled circles), AMPA receptors 
(open circles), N MDA receptors (open squares). External 
stimulation from other areas was modeled by synaptic bom-
bardment (synapses with truncated lines). Externally gener-
ated theta oscillations from the medial septum (MS) were 
imposed on OLM and basket cells. From N eymotin et al. 
(2011).

8522_023.indd   688 6/10/2016   8:04:37 PM



PROPERTY OF THE MIT PRESS
FOR PROOFREADING, INDEXING, AND PROMOTIONAL PURPOSES ONLY

PROPERTY OF THE MIT PRESS
FOR PROOFREADING, INDEXING, AND PROMOTIONAL PURPOSES ONLY

23.5  Summary and Conclusions    689

Therefore, it could be predicted that the experimental 
effect of ketamine is based on primary blockage at 
NMDA receptors on the OLM cells (figure 23.11).

These simulations suggested a sequence of patho-
physiological alterations that led from a reduction in 
activity at a particular receptor to spectral changes at 
the network level. In order to restore the physiological 
power spectra of oscillations, a selective current injec-
tion into the OLM cell population was used, which 
recovered the control oscillations by direct opposition 
at the primary pathological focus. Here a tonic activa-
tion was used to replace a missing periodic effect, sug-
gestive of the situation in PD where tonic dopamine 
replaces the phasic release that has been lost. Such a 
prediction points to the role computational neurosci-
ence can play in pointing out possible mechanisms of 
action for new treatments even in a complex illness 
such as schizophrenia.

23.5  Summary and Conclusions

In this chapter, we have discussed four major brain 
diseases. We have focused on these diseases since this is 
where most of the modeling has been done. These 
diseases also represent something of a cross-section of 
the types of problems that can affect the brain. Epilepsy, 
for example, is the prototypical dynamical disease. A 
variety of insults or abnormalities, at different levels of 
organization, can result in dynamical perturbations  
that result in common symptomatic forms. Hence the 

types have different sensitivity to NMDA-receptor antag-
onists (Bresink et al., 1995), it was hypothesized that the 
discrepancy might be due to different effects of ket-
amine on the different cell types. There were 16 com-
binations for blocking N MDAR  on different sites. 
Changes in theta (3–12 Hz) and gamma (30–100 Hz) 
power were compared between the baseline and each 
of the combinations. Out of the 16 different combina-
tions of N MDAR  switched off, combinations that 
involved N MDAR  being off at OLM cells replicated  
the experimental findings (Lazarewicz et al., 2010). 

Figure 23.10  Network activity during baseline simulation. 
Network raster plot (A) shows the times of spikes in each cell 
organized into the three different cell populations—each dot 
on the raster is a single spike in a single cell. The periodic 
drive from medial septum (MS) is also shown. Spike densities 
(B) summarize the amount of spiking in each population over 
time by smoothing over the spikes in the raster plot (calcu-
lated using 1-ms bins and smoothing with 3-ms triangle filter). 
Local field potential (LFP; C) demonstrates the overall con-
tribution of the pyramidal cells (PYR) as they would be seen 
by an electrode put into the brain. The single cell voltage 
traces (D) show the pattern of spikes and postsynaptic poten-
tials (little bumps between spikes) for a representative cell for 
each of the three populations. Note that the fast frequency of 
activity seen in the LFP is an emergent population phenom-
enon based on many pyramidal cells firing together, despite 
each pyramidal cell firing infrequently. OLM, oriens-
lacunosum moleculare cells. From Neymotin et al. (2011).

Figure 23.11  Raster plot (top) and local field potential 
(LFP) (bottom) showing baseline, ketamine wash-in, and 
wash-out from a single simulation. Vertical dotted lines mark 
times of ketamine wash-in and wash-out. During the period 
when ketamine is present, there is a great increase in the 
strength of fast (gamma) activity and a decrease in the 
strength of the slow (theta) activity. OLM, oriens-lacunosum 
moleculare cells; PYR, pyramidal cells; MS, medial septum. 
From Neymotin et al. (2011).
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rehabilitation reaches a threshold. PLoS Computational 
Biology, 4(8), e1000133.
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review of the neuropathological evidence and its patho-
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neural oscillations and association with clinical symptoms 
under subanesthetic ketamine. Neuropsychopharmacology, 
35(3), 632–640.

Humphries, M., Stewart, R., & Gurney, K. (2006). A physi-
ologically plausible model of action selection and oscilla-
tory activity in the basal ganglia. Journal of Neuroscience, 
26(50), 12921–12942.

Kaas, J. H., Merzenich, M. M., & Killackey, H. P. (1983). 
The reorganization of somatosensory cortex following 
peripheral nerve damage in adult and developing mammals. 
Annual Review of Neuroscience, 6(1), 325–356.

Kaiser, M., Goerner, M., & Hilgetag, C. (2007). Criticality 
of spreading dynamics in hierarchical cluster networks 
without inhibition. New Journal of Physics, 9(5), 110.

Kang, M., Spigelman, I., Sapp, D., & Olsen, R. (1996). Per-
sistent reduction of GABAA receptor-mediated inhibition 
in rat hippocampus after chronic intermittent ethanol 
treatment. Brain Research, 709(2), 221–228.

Larter, R., Speelman, B., & Worth, R. (1999). A coupled 
ordinary differential equation lattice model for the simula-
tion of epileptic seizures. Chaos: An Interdisciplinary Journal 
of Nonlinear Science, 9(3), 795–804.

Lazarewicz, M., Ehrlichman, R ., Maxwell, C., Gandal, 
M., Finkel, L ., & Siegel, S. (2010). Ketamine modulates 
theta and gamma oscillations. Journal of Cognitive Neurosci-
ence, 22(7), 1452–1464.

Lopes Da Silva, F., Blanes, W., Kalitzin, S., Parra, J., 
Suffczynski, P., & Velis, D. (2003). Dynamical diseases 
of brain systems: Different routes to epileptic seizures.  
IEEE Transactions on Biomedical Engineering, 50(5), 540–
548.

disease is the abnormal dynamics rather than being 
specific to one or the other of the possible causes. It is 
hypothesized that schizophrenia may represent a similar 
case, where multiple causes and levels of causation end 
up in a final common pathway of impaired neuronal 
dynamics, with the various manifestations being 
explained by the various circuits affected.

In epilepsy, there are multiple causes that converge 
on a relatively small set of manifestations. In PD, a 
single major disturbance diverges to produce several 
dynamical manifestations. For example, tremor and 
rigidity are not obviously related, an augmenting of 
movement contrasted with a decrementing. However, 
we are beginning to understand how this manifestation 
divergence might occur as expressions of underlying 
dynamical disturbances producing seemingly discrep-
ant manifestations.

By contrast with the others, stroke is an ablative 
rather than a primarily dynamical disease and may have 
diverse loci, with varied effects accordingly. This abla-
tion is imposed upon the brain, and the brain must 
react to it through alterations in activity that allow it to 
continue functioning at various levels. Although these 
alterations are also dynamical, it is reasonable to con-
sider handling the pathology and responses to pathol-
ogy as a series of snapshots at different points in time 
rather than necessarily following the dynamics in detail.

Because the brain is such a complex organ, with 
many underlying complex subsystems, its pathologies 
would also be expected to be extraordinarily complex 
and resistant to generalization. Thus, the presence of 
symptoms and signs that can be lumped together as a 
specific brain disease may be regarded as something of 
a surprise. However, the ways in which these symptoms 
and signs fit remains a major puzzle, a puzzle which we 
can hope to pull apart and then put back together using 
computational neuroscience. N owhere is this puzzle 
more apparent than in schizophrenia, where bizarre 
ideas reflect thought disorders. Putting this shattered 
cognition back together again remains a far-off goal to 
which computational neuroscience can contribute, 
perhaps by yielding novel predictions that support the 
fitting of neural activity patterns back together through 
hitherto unexpected kinds of treatments.
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