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Brain–machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neu-
ronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-
control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving
us new tools to better understand the brain’s use of electrical signals. However, the biomimetic approach
presents challenges in integrating technologies across multiple hardware and software platforms, so that
the different components can communicate in real-time. We present the first steps in an ongoing effort to
integrate a biomimetic spiking neuronal model of motor learning with a robotic arm. The biomimetic
model (BMM) was used to drive a simple kinematic two-joint virtual arm in a motor task requiring
trial-and-error convergence on a single target. We utilized the output of this model in real time to drive
mirroring motion of a Barrett Technology WAM robotic arm through a user datagram protocol (UDP)
interface. The robotic arm sent back information on its joint positions, which was then used by a visual-
ization tool on the remote computer to display a realistic 3D virtual model of the moving robotic arm in
real time. This work paves the way towards a full closed-loop biomimetic brain-effector system that can
be incorporated in a neural decoder for prosthetic control, to be used as a platform for developing biomi-
metic learning algorithms for controlling real-time devices.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Understanding the human brain has become one of the great
challenges of this century (Lytton et al., 2012). It has the potential
to significantly benefit human health by providing tools to treat
neural disease and repair neural damage. Greater understanding
will also revolutionize our interactions with the world through
development of BMIs for motor control that enable patients with
central nervous system injuries or lost limbs to regain autonomy.
Neuroscience research is also beginning to make progress towards
understanding how neurons encode information, and how the
complex dynamical interactions within and among neuronal net-
works lead to learning, and produce sensorimotor coordination
and motor control. With this knowledge, we can begin to use
computers both to decode brain information and to autonomously
produce brain-like signals to control prosthetic devices, or to con-
trol a real arm (Carmena et al., 2003).

A key problem with simulation technology is that one can
not be sure whether something critical, known or unknown,
has been left out. This concern suggests an approach whereby
we embed biomimetic neuronal networks in the actual physical
world in which the real brain is embedded. We thereby both
take advantage of the benefits of physicality and ensure that
our systems are not omitting some factor that is required for
actual functionality. Physicality provides a form of memory,
since the arm is actually located in space and will later be in
the same location unless operated on by external forces such
as gravity. It also provides inertia, which is memory for the
1st derivative of position. However, these mnemonic attributes,
features under what set of circumstances, can be limitations
(bugs) when the system is presented with other operational
requirements.
robotic

http://dx.doi.org/10.1016/j.patrec.2013.05.019
mailto:salvadordura@gmail.com
http://dx.doi.org/10.1016/j.patrec.2013.05.019
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec
http://dx.doi.org/10.1016/j.patrec.2013.05.019


Fig. 1. Overview of the biomimetic model of sensorimotor cortex. A 2-joint virtual
arm is trained to reach towards a target using reinforcement learning. A propri-
oceptive preprocessing area feeds arm information to the sensory region, which is
connected to the motor units that drive the muscles to change the joint angles. The
Actor is trained by the Critic which evaluates error and provides a global reward or
punishment signal. Reproduced from Chadderdon et al. (2012) with permission.
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The physical world also plays an essential role in learning and
behavior (Almassy et al., 1998; Edelman, 2006; Krichmar and
Edelman, 2005; Lungarella and Sporns, 2006; Webb, 2000). For
example, the selection hypothesis emerges from embodiment:
the environment can select neuronal dynamics that are suitable
for producing desired behaviors through the agency of a limb or
other effector (Edelman, 1987). Embodiment can be used to make
predictions for how changes will occur during the perception–
action–reward–cycle (Mahmoudi and Sanchez, 2011), as the
embedding of a system in the environment provides adaptation
opportunities. Further levels of embedding are achieved by the
development of hybrid systems that use co-adapting symbiotic
relations between brain (the prosthetics-user) and artificial agents
(biomimetic systems and smart prosthetic devices) and among
these artificial agents. The co-adaptions occur as the system moves
towards common goals, e.g., reaching for an object (Sanchez et al.,
2012). In this context, one can readily see the advantages of biomi-
mesis: the biomimetic system is a partial model of the natural
agent’s brain processes that facilitates the transfer of neural enco-
dings without explicit decoding, providing representations based
on those of the brain and then serving as intermediary between
brain and devices. We note that co-adaptation is further extended
to include the environment itself, as when we redesign objects so
as to make them easier to manipulate with artificial limbs, or easier
to navigate for individuals in wheelchairs.

Biomimetic brain models (BMMs) are able to replicate many
experimental paradigms, such as sensorimotor learning experi-
ments (Chadderdon et al., 2012; Neymotin et al., 2013) or cellular
microstimulation (Kerr et al., 2012). They are also able to accu-
rately reproduce physiological properties observed in vivo, includ-
ing firing rates, stimulus-induced modulations and local field
potentials (Neymotin et al., 2011). The system presented here will
be extended into a framework to link real-time electrophysiologi-
cal recordings with supercomputers that run the BMMs, and
thence to control of prosthetic devices. This co-adaptive brain–
machine interface extends the classical BMI paradigm by engaging
both subject and computer model in synergistic learning.

Major challenges in assembling a system that incorporates a
BMM into the neural decoder/smart prosthetic data stream are
(1) getting the components to communicate with one another,
and (2) achieving this communication in real-time. There are a
plethora of different systems for acquiring electrophysiological
data from animal or human subjects (Buzsáki, 2004), a number
of potential neuronal simulators (biomimetic and state-space) that
might be assembled together to provide the brain model (Brette
et al., 2007), and a wide array of potential prosthetic links with dif-
ferent physical characteristics that require different control strate-
gies. Software components within this data stream may run on, for
example, machines running MATLAB under Windows, or on ma-
chines running Python or C++ code under Linux. A networking
framework needs to be developed that can not only permit mes-
sages to be passed between these disparate environments and
hardware platforms, but to do so in a timely fashion so that the
prosthetic-using subject does not perceive a disruptive lag in the
performance of a prosthetic limb.

In this paper, we address the initial problems of developing the
larger real-time co-adaptive BMI system. We begin with the design
of inter-system communications between the BMM and the pros-
thetic limb, leading towards a real-time interface between a model
of sensorimotor cortex and a robotic arm (Barrett Technology’s
Whole Arm Manipulator – WAM (Barrett Technology Inc.,
2012a)). We provide the NEURON-based BMM and the robotic
arm, each running on a separate Linux-based machine. Our imple-
mentation of the real-time interface then provides a Python appli-
cation that forwards data from the BMM to the WAM arm and
passes robot arm position information back to a display window.
Please cite this article in press as: Dura-Bernal, S., et al. Towards a real-time in
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2. Methods

We used a BMM previously developed within the NEURON
simulation environment using an extended synaptic functionality
(Lytton et al., 2008). The original model drove a simple kinematic
two-joint virtual arm in a motor task requiring trial-and-error con-
vergence on a single target. We utilized the output of this model to
drive mirroring motion of a Barrett Technology WAM robotic arm
in real time through a UDP interface. Additionally, the position
information from the robot arm was fed back into the model. This
feedback then drived a virtual WAM robotic arm developed within
V-REP, an open-source robot simulation environment (Freese et al.,
2010). This permitted the remote computer to display a represen-
tation of the moving robotic arm in real time.

A set of interfaces was designed to provide communication be-
tween the NEURON model and the WAM robotic arm. The external
PC ran NEURON code, which called a set of Python functions. These
interfaced with the WAM arm via UDP communication, and with
the V-REP virtual robotic arm via a Python application program-
ming interface (API). The robot code ran on the WAM internal PC,
utilizing functions developed in the C++ Libbarrett library (Barrett
Technology Inc., 2012b) to provide interface with the NEURON
simulation via UDP communication.

The BMM, the robotic arm, the virtual robotic arm and the net-
work interface between these components are described below in
more detail.
2.1. NEURON-based biomimetic brain model

2.1.1. Overview of the system and background
For our BMM, we used the spiking neuronal model of sensori-

motor cortex previously developed (Fig. 1) (Chadderdon et al.,
2012; Neymotin et al., 2013). This model had been trained to per-
form a simple movement task: rotating a two-joint virtual arm to a
target by learning an appropriate mapping between the neural
populations through reinforcement learning mechanisms. From
terface between a biomimetic model of sensorimotor cortex and a robotic
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Fig. 2. Raster plot of BMM after training. Raster plot, where blue (red) dots are
spikes in inhibitory (excitatory) cells; ES, IS, ILS, EM, IM, ILM (E excitatory; I
inhibitory fast-spiking; IL inhibitory low-threshold spiking interneurons; S higher-
order sensory; M motor; P position sensory; green: shoulder; orange: elbow). (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

S. Dura-Bernal et al. / Pattern Recognition Letters xxx (2013) xxx–xxx 3
the pattern recognition perspective, our model can be interpreted
as a classifier that learns to generate the required output (motor
command) based on the input patterns (joint positions and target).
Although it is possible that machine learning techniques, such as
gradient-based deterministic algorithms, can efficiently solve this
problem, our model has the advantage of being based on realistic
neuronal learning mechanisms and dynamics. This is a key aspect
for the long-term goals of this work, which are described in
Introduction and Discussion.

Reinforcement learning is used as a mechanism for learning.
The essence of this learning mechanism was summarized over
100 years ago in Thorndike’s Law of Effect (Thorndike, 1911): stim-
ulus–response mappings are strengthened by global reward and
weakened by global punishment. Reinforcement learning methods
(Sutton, 1998) have been used extensively in machine learning and
offer an advantage over teacher-supervised learning methods in
that they do not require a known desired output representation
to match against the models current (behavioral) output. However,
unlike unsupervised learning methods, they do offer some feed-
back regarding fitness of the behavior.

A further framework for explaining motor reinforcement learn-
ing is the perception–action–reward–cycle. The learning system is
divided into an actor, mapping perceptions to actions (P to A), and
a critic providing reward and punishment feedback to the actor
(Chadderdon et al., 2009; Joel et al., 2002). To utilize this scheme,
the naive actor must produce some actions that can be critiqued.
This is the role of motor babble (random movements), produced
in our model via noise.

One challenge in the learning of actor/critic RL systems is
the distal reward or credit assignment problem (Izhikevich,
2007): reinforcers are delivered after the behavior is complete,
after synaptic and neuronal activations leading up to the output
are no longer active. A synaptic eligibility trace is typically used
to solve this problem: neuron synapses, where learning occurs,
are tagged to receive a credit or blame signal that arrives later
(Sutton, 1998). In the current model we trained synaptic
weights between spiking units using global reward and
punisher signals.

2.1.2. Model implementation
Individual neurons were modeled as rule-based dynamical

units with several key features found in real neurons, including
adaptation, bursting, depolarization blockade, and voltage-sensi-
tive NMDA conductance (Lytton and Stewart, 2005; Lytton and
Stewart, 2006; Lytton and Omurtag, 2007; Lytton et al., 2008;
Lytton et al., 2008; Neymotin et al., 2011b; Kerr et al., 2012).
The model consisted of 384 excitatory and 128 inhibitory cells,
each with three types of synaptic inputs commonly found in
cortex (AMPA, NMDA and GABAA). Cells were connected probabi-
listically (only a subset of all possible connections were made)
with connection densities and initial synaptic weights varying
depending on pre- and post-synaptic cell types. The cells were
arranged into three different populations with realistic and
anatomical properties. Input to the sensory cells was provided
by 96 position (P) cells, representing the four muscle lengths
(flexor and extensor muscles for each joint). The sensory popula-
tion, which received spiking input from position cells, included
192 excitatory sensory (ES) cells, 44 fast spiking sensory inter-
neurons (IS), and 20 low-threshold spiking sensory interneurons
(ILS). The motor population, which received spiking input from
sensory cells, consisted of 192 excitatory motor (EM), 44 fast
spiking motor interneurons (IM), and 20 low-threshold spiking
motor interneurons (ILM). The EM population was divided into
four 24-cell subpopulations which controlled each of the four
muscles. Joint positions were updated at 50 ms intervals, based
on extensor and flexor EM spike counts.
Please cite this article in press as: Dura-Bernal, S., et al. Towards a real-time in
arm. Pattern Recognition Lett. (2013), http://dx.doi.org/10.1016/j.patrec.2013.0
2.1.3. Model training and evaluation
During training, plasticity was present at three sites in the sen-

sorimotor network: E?E recurrent connections in both S and M
areas; bidirectional E?E connections between S and M areas;
and local E?I connections within S and M areas; where E refers
to excitatory, I to inhibitory, S to sensory and M to motor. The
Critic, a global reinforcement signal, was driven by the first deriv-
ative of error between position and target during two successive
time points (reward for decrease; punishment for increase). We
used a spike-timing-dependent rule to trigger eligibility traces to
solve the credit assignment problem (Izhikevich, 2007). When re-
ward or punishment was delivered, eligibility-tagged synapses
were potentiated (long-term potentiation LTP), or depressed
(long-term depression LTD), correspondingly. Reinforcement oc-
curred at the time of joint position updating (every 50 ms). The
system was able to learn the appropriate mappings between neural
populations required for target acquisition.

Model evaluation involved over 2000 simulations, each with a
duration of 15 s, of previously trained networks. Multiple networks
were produced using five different random wirings and five differ-
ent pseudorandom driving-input streams in order to ensure that
positive, or negative, results, were not simply the result of partic-
ular wiring or input settings which biased the learning. We addi-
tionally assessed five different targets, using 16 different initial
arm positions for each. Initial training required 400,000 simula-
tions (five random wirings, five input streams, five targets, 16 ini-
tial arm positions, 200 reaches from each position), each with a
duration of 15 s.

Learning produced multiple alterations in the activity map and
in consequent network dynamics. These changes included a 3-fold
increase in excitatory weight gains between the different popula-
tions after training to reach the two-degree-of-freedom virtual
arm towards a single target. Several of the populations also showed
enhanced synchrony, visible as vertical stripes in the raster (Fig. 2).
P cells tuned to a specific subset of joint angles (green: shoulder;
orange: elbow), demonstrate the arm’s position and follow a tra-
jectory in reaching towards the target. Model performance, mea-
sured as a fraction of trials where joint positions ended within
10 degrees of target location, was substantially augmented with
training (Chadderdon et al., 2012; Neymotin et al., 2013). After
training and across targets, the average success ratio was 73%
and 68% for shoulder and elbow angles, respectively, compared
terface between a biomimetic model of sensorimotor cortex and a robotic
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to only 19% and 24% for the naive networks. Success was calculated
for naive and trained networks from identical initial conditions
(starting position and random inputs).

The model of sensorimotor cortex was implemented in
NEURON 7.2 (Carnevale and Hines, 2006) for Linux and is available
on ModelDB (Peterson et al., 1996) (https://senselab.med.yale.edu/
modeldb).

2.2. WAM robotic arm

Barrett Technology has developed the Whole Arm Manipulator
(WAM) as a compact, low weight, low power consumption robotic
arm providing smooth and precise joint motion. These features
make it well suited for robotics control research. We used 2 de-
grees of freedom (shoulder flexion/extension, elbow flexion/exten-
sion) out of the 7 available in our WAM configuration. The WAM
internal PC, embedded in the base of the WAM arm, controlled
the robot arm motors through a 2-wire differential serial bus
(CAN bus) that provided digital communication at 1 Mbps. The
control loop, which runs by default at 500 Hz, sent motor torques
from the WAM internal PC to the WAM arm motors and sent back
the motor positions from the motors to the internal PC (see Fig. 3).
An open-source C++ library, Libbarrett, provided by Barret Technol-
ogy, included high-level functions to control the WAM arm from
the internal PC. When a command was sent from the internal PC,
it was translated into CAN signals and addressed to the appropriate
motors. The WAM included a small router attached to the outside
of the robot’s base that allows an external PC to connect to the
internal WAM PC, to both remotely run code in the internal PC to
provide 2-way communication in real-time between internal and
external PCs. In the interface described in this paper, we employed
this mechanism to control the robot arm from an external PC and
receive information on the joint positions in real time.
Fig. 3. Diagram of interface between BMM and WAM robot arm. The external PC runnin
them into joint torques that are sent to the WAM arm. The process also occurs in the oppo
and then via UDP to the external PC back into the BMM.

Please cite this article in press as: Dura-Bernal, S., et al. Towards a real-time in
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2.3. V-rep virtual robotic arm

V-REP is a new open-source robot simulation platform that
allows creation of detailed and realistic simulations of robots
and experimentation with them in virtual worlds. It included
communication APIs with common programming languages
(Python, Matlab (MathWorks, Inc., 2012), C++, and others) that
allowed control of a virtual robot from any external application
and receiving of feedback from the simulator. Additionally, the
virtual robot output can be used to control a real robot in
real-time. The simulation environment provided easy-to-use
and powerful tools, including a library of 3D objects, robots
and devices, several types of sensors (vision, tactile, etc.) that
can feed data to the robot, and the ability to plot graphs of
any of the variables in the simulation.

We added a model of the Barrett WAM arm to the V-REP simu-
lator, appending to an existing model of the Barrett hand. This vir-
tualization characterized over 20 physical, kinematic, and
dynamical parameters of the real device. It provided inverse and
forward kinematics calculations and 2 physics engines for dynam-
ics calculations, enabling simulations of real-world physics and ob-
ject interactions, including collisions and grasping. The WAM
virtualization was used for two purposes: 1. replace the real robot
arm during experimentation (tested by sending BMM output to
both the real and virtual WAM in parallel); 2. provide real time
3D visualization of the arm movements.

2.4. Biomimetic brain model and network communication on external
PC

The Python interface functions are used to set up the communi-
cation sockets during initialization and to periodically send and re-
ceive joint angles to and from the WAM PC. In the arm mirroring
g the BMM sends the desired joint angles to the WAM internal PC, which converts
site direction, where joint angles are fed from the WAM arm to the WAM internal PC

terface between a biomimetic model of sensorimotor cortex and a robotic
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Fig. 4. Screen capture of video taken during experiment. The BMM, running in the
laptop (left window), controls in real time both the real WAM arm, via LAN
network, and the V-REP virtual WAM arm, running in the same laptop (right
window).
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scheme, we transpose the single horizontal plane of the NEURON-
simulated 2D arm into the vertical plane of the WAM arm.

The Python interface functions are loaded into the NEURON
simulation environment and called directly from NEURON. Python
being one of the two scripting languages used in the NEURON sim-
ulator (Carnevale and Hines, 2006). The communication function
worked by opening a UDP socket between the external PC and
the WAM internal PC. It then converted the output NEURON joint
angles into UDP packets, and forwarded these through the socket
to the robot arm. Finally, it received the joint position information
coming back from the robot arm via the same UDP socket and
saved it to a data file (Fig. 3). The current simulation model
performed these operations at 50 ms simulated-time intervals
(currently 150 ms real-time). UDP packets were time-stamped by
both simulated time and by real-time, both measured from
simulation start. The rate of incoming packets was, however, much
higher, as they originated in the WAM PC, which operates
strictly at 500 Hz (2 ms intervals). For this reason, when the
buffer was read, all incoming packets were discarded, except the
last one which contained the most up-to-date information from
the WAM.

The joint angles received from the robotic arm were available to
the BMM. In future, these will be provided as feedback information
to the model during learning. Currently, we used these angles only
to provide real-time visualization of the movements on the exter-
nal PC using the WAM virtualization in V-REP. This required devel-
opment of the real-time interface between the BMM and the
virtual WAM arm using a Python API provided by V-REP. The inter-
face worked in a similar fashion to that of the real WAM, sending
packets containing the shoulder and elbow angles. However, in this
case, the data was sent locally within the same computer.

2.5. Robot control and network communication on WAM internal PC

The open-source Libbarrett C++ library was the primary code
base used to control and operate the WAM arm from the WAM
internal PC. It connected functional blocks called Systems, which
are small virtual machines that process information from inputs
to outputs. The output of a System can be connected to the input
of one or several Systems in order to obtain the desired functional-
ity. This is similar to the process of linkage used in MathWorks’
Simulink (MathWorks, Inc., 2012).

We implemented two Systems: a Network System (NS), to han-
dle UDP communication, and a Control System (CS), for controlling
and interacting directly with the robot arm. The NS established the
UDP socket, received UDP packets from the external PC containing
the desired joint angles, and sent back to the external PC the joint
angles of the WAM arm received from the CS. The CS received joint
angles from the NS, converted them to joint torques, and sent these
to the robot motors. Additionally, the CS fed back the joint angles
from the robot motors to the NS (Fig. 3).

Communication between CS and robot arm motors must run in
hard real-time, operating at a fixed frequency of 500 Hz. In each cy-
cle, joint torques were sent to the motors and joint angles were re-
ceived back. Any delay in this process resulted in a fault, causing
the robot to shut down. By contrast, communication between NS
and external PC can run in soft real-time: the delays for each cycle
may vary significantly due to the local-area-network properties.
Additionally, a small percentage of packets may be lost. In order
to prevent the soft real-time NS from adversely affecting the hard
real-time CS, the former was implemented using non-blocking UDP
communication. Additionally, in cases where UDP packets were
not received, the NS continued to output the joint angles from
the last packet it had received from the Python interface. This en-
sured that the CS received a constant input of joint angles even
when the NS lagged. This also eliminated the need for sending
Please cite this article in press as: Dura-Bernal, S., et al. Towards a real-time in
arm. Pattern Recognition Lett. (2013), http://dx.doi.org/10.1016/j.patrec.2013.0
replicated joint angle packets from the Python interface, and led
to smoother trajectories.

Currently the arm is controlled using positional, rather than
velocity or force information. We therefore needed a way of adjust-
ing the speed or transition smoothness between the joint angles
sent from the BMM simulation to the WAM arm. In collaboration
with the Barrett software team, a new class was added to the Lib-
barrett library in order to permit the setting of a fixed speed for
each joint, in radians per cycle, so as to make it possible to directly
use positional information to control the WAM arm. This new
method was employed to transform the output of the NS before
it was fed to the CS to control the arm. In this way, we generated
a smooth trajectory that could be safely followed by the WAM
arm. The speed parameters used were 0.0018 and 0.00275 radians
per cycle, for the shoulder and elbow joints, respectively.

Internally, the WAM arm is controlled using a proportional-
integral-derivative (PID) controller that gathers positional error
feedback and attempts to minimize that error by adjusting the mo-
tor torque. More specifically, the PID operates proportionally to the
error (kp), the integral of the error (ki), and the derivative of the er-
ror (kd). We tuned these parameters to our system, based on the
rate of incoming packets and on the joint speed parameters. The
resulting values were kp ¼ 4375; ki ¼ 5; kd ¼ 10 for the shoulder
joint, and kp ¼ 875; ki ¼ 0:5; kd ¼ 1 for the elbow joint.

3. Results

3.1. Experimental set-up

The BMM ran on an external PC (laptop with 2.66 GHz Intel
Core i7) and sent joint angles via wireless LAN to the WAM internal
PC controlling the WAM arm. The resultant WAM joint angles were
fed back to the BMM via wireless LAN and forwarded to the WAM
virtual virtualization, running under V-REP on the same external
PC (Fig. 4). The joint angles are passed through the BMM software
so that they can later be used as inputs for the learning loop. The
left window in Fig. 4 laptop screen shows the textual output of
the BMM, while the right window of the laptop shows the V-REP
virtual WAM arm. A demonstrative video is available at:
www.neurosimlab.org/salvadord/PRL_WAMarm_video.m4v.
terface between a biomimetic model of sensorimotor cortex and a robotic
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Fig. 5. Communication delay and time per iteration. (left) Box-and-whisker plot of the communication delay of packets sent from the BMM to the WAM via LAN. (right) Box-
and-whisker plot of the time per iteration in the BMM.
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We tested four different trajectories generated by the BMM
using different targets, starting positions and network wirings.
Each simulation ran for 30 s of simulated time, which required
approximately 100 s of real time. The difference in times was due
to the slowness of the current BMM, rather than to delays in the
communication loops. To evaluate interface performance, we syn-
chronized the PC clocks using Network Time Protocol (NTP), and
recorded sent and received time-stamped joint angles both at
BMM and WAM, as well as time-stamped data packets.
Fig. 6. Comparison of joint angles over a 95-s trajectory. The arm shoulder (left) and elb
angles generated by the BMM and sent to the WAM PC; blue dotted lines: actual angles w
angles. (For interpretation of the references to colour in this figure legend, the reader is

Please cite this article in press as: Dura-Bernal, S., et al. Towards a real-time in
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3.2. Communication delay

Mean communication delay over all trajectories was 9.16 ms,
well within the bounds required for real-time performance
(Fig. 5). The communication delay of packets sent from the external
PC (BMM) to the WAM PC, over the first 100 packets, was compa-
rable for all four trajectories (left panel). Mean duration of each
iteration over all trajectories was 174.76 ms, a time that included
calculating the shoulder and elbow angles based on the model
ow (right) angles recorded at the BMM (top) and at the WAM (bottom). Red lines:
here the WAM arm moved and which were fed back to the BMM; green lines: target
referred to the web version of this article.)

terface between a biomimetic model of sensorimotor cortex and a robotic
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Fig. 7. Comparison of joint angles (5 s zoom). Same as Fig. 6 but zoomed in 20� to illustrate discrepancy in update frequencies (�6 Hz for BMM and 500 Hz for WAM) and
how the WAM smoothes the BMM instantaneous trajectory changes.

Fig. 8. Difference between angles. Mean and standard deviation (error bars) of the difference between the angles sent to and received from the WAM, recorded at the BMM
(top); and received from and sent to the BMM, recorded at the WAM (bottom).

S. Dura-Bernal et al. / Pattern Recognition Letters xxx (2013) xxx–xxx 7

Please cite this article in press as: Dura-Bernal, S., et al. Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic
arm. Pattern Recognition Lett. (2013), http://dx.doi.org/10.1016/j.patrec.2013.05.019

http://dx.doi.org/10.1016/j.patrec.2013.05.019


8 S. Dura-Bernal et al. / Pattern Recognition Letters xxx (2013) xxx–xxx
neural populations, sending and receiving packets to/from the
WAM arm, and sending packets to V-REP for visualization. The
time per iteration was similar accross trajectories (right panel).
These results indicate that the overall temporal bottleneck was
not imposed by the network interfaces, but by the BMM itself,
which only sent and received packets at every 50 ms (simulated-
time) iteration, with real-time per iteration varying depending on
the amount of processing required.
3.3. Shoulder and elbow angles

We obtained good correspondence between BMM target angles
and resultant WAM angles (Fig. 6). Angles sent by the BMM (red)
oscillate near the target lines (green), reflecting ongoing babble
in the system. WAM (blue) followed with excellent accuracy over
the full 95 clock-sec simulation.

The detailed angle trajectories shown in Fig. 7 demonstrated de-
lay of 100–200 ms, as well as some undershoot. Undershoot was
greater at the shoulder than at the elbow due to the greater inertia
at the proximal joint. Markers provide precise times when packets
were sent or received from/to BMM (top), illustrating the time per
update iteration, summarized in Fig. 5 (right panel). Angles re-
corded at the WAM, with sampling at 2 ms, look continuous at this
time scale (Fig. 7 bottom). The horizontal red line segments show
the intermittency of packets received from the BMM, demonstrat-
ing persistence of angles from the prior packet while awaiting the
next packet’s arrival. The abrupt (instantaneous) angle change
commands from the BMM must then be smoothed for the WAM
by imposing the speed constraints using the techniques described
in Methods.

To quantify the accuracy of the trajectory followed by the WAM,
we compared angles sent to and received from the WAM, recorded
at the BMM; and those sent to and received from the BMM, re-
corded at the WAM (Fig. 8). We discarded angle differences due
Fig. 9. Spatiotemporal trajectories of arm end-effector. The horizontal and vertical locat
WAM, based on the recorded angles and the robot dimensions. Green line represents the
is referred to the web version of this article.)
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to time delay by comparing the sent trajectory at iteration n with
the received trajectory at iteration nþ 1. Mean angle difference re-
corded at the BMM, averaged for the two joints and all trajectories
was 0.84 degrees. Taking into account the range of operation of the
WAM joints is 226 degrees (shoulder) and 230 degrees (elbow), the
overall relative angle difference amounts to only 0.36%.
3.4. Spatiotemporal trajectory

As noted in our previous papers (Chadderdon et al., 2012), the
presence of babble produces irregular spatiotemporal paths from
starting point to target (Fig. 9). The four trajectories tested were
however closely matched from the BMM commands (red) to the
WAM end-effector with feedback to the BMM (blue).

The location difference recorded at the BMM, averaged over all
trajectories, was 1.29 cm. Given that the range of operation of the
WAM arm is 2.02 m, this indicates a relative end-effector location
difference of only 0.64%.
4. Discussion

We have developed a real-time interface between a BMM of
sensorimotor cortex and a robotic device in the real-world. We
used our model to demonstrate the feasibility of using realistic
neuronal network models to control devices in real-time. We eval-
uated the system using four different reaches each lasting greater
than 1 min. We demonstrated that the robot arm could follow
these BMM trajectories in real time.

The trajectories generated by the BMM exhibited significant
fluctuations as a result of the babble noise used to produce random
movement for modulation through reinforcement learning. An
additional factor was the large discrepancy between the update
frequency of the model (�6 Hz) compared to that of the robot
arm (500 Hz). These two factors made it physically impossible
ions over time of the WAM end-effector, sent to (red) and received from (blue) the
target. (For interpretation of the references to colour in this figure legend, the reader
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for the arm to follow the abrupt instantaneous changes of several
degrees received from the model. However, in this study we are
not evaluating the BMM itself but rather its interface with a robotic
arm. In this context, the large fluctuations and the discrepancy in
update frequency provided a greater challenge to producing a
workable system, which we were able to solve by imposing a fixed
speed at each joint. In this way, the arm’s control system was able
to generate an approximate smoothed version of the trajectory for
the arm to follow. This explains the small differences in the trajec-
tories sent to and received from the WAM.

In order to improve the trajectories generated by our BMM we
have begun work on adding an intermediate step between the
BMM and the WAM robotic arm: a musculoskeletal arm model.
The interposition of this arm should increase the biological realism
of our motor control system. A virtual musculoskeletal arm model
will take as input neural excitation for each muscle and will pro-
vide realistic limb position information including muscle fiber
length, tendon length, and force or joint angles. The model will
then feed muscle neural activation patterns to the virtual arm,
whose output will then be used to control the robot arm, leading
to more realistic movements. This feedback information, whether
from the robotic arm or from the musculoskeletal arm model, will
then provide the position information used for reinforcement
learning in the brain model. Additionally, we are parallelizing our
BMM so that it can run in our high performance computing
(HPC) cluster leading to a higher update rate and smoother
trajectories.

The software/hardware design reported here sets the stage for
our future work, which will include a closed-loop brain–machine
interface with a non-human primate. This interface will acquire
signals from the primate’s brain, pass it to the BMM, and pass mo-
tor commands to the robotic arm. The monkey will receive visual
and sensory feedback and then modulate its brain state, affecting
the signals it sends to the sensorimotor cortex model. This type
of system will be a new form of brain–machine interface where
the robotic and biological sides are both learning to work together
(Digiovanna et al., 2010; Sanchez et al., 2012).

As our models become more realistic, we will use them as
stand-ins for actual brain regions that are damaged or temporarily
inactivated. For example, a biomimetic brain model might take in-
put from dorsal premotor cortex (PMd) in subjects that have dam-
age to the motor cortex (M1) and serve to translate the PMd
command signals into reaching movements that would have been
generated in undamaged M1. These models will also be used to
predict the results of in vivo experiments. We have recently devel-
oped computer models of sensory cortex, and modeled the effects
of electrical microstimulation (Kerr et al., 2012). At a later stage, it
should be possible to use signals from the virtual or robotic limb to
generate microstimulation signals for sensory areas of brain to al-
low a user to feel his or her prosthetic limb.
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