
1 Evolutionary algorithm
2 optimization of biological
3 learning parameters in a
4 biomimetic neuroprosthesis
5 Biomimetic simulation permits neuroscientists to better understand
6 the complex neuronal dynamics of the brain. Embedding a
7 biomimetic simulation in a closed-loop neuroprosthesis, which can
8 read and write signals from the brain, will permit applications for
9 amelioration of motor, psychiatric, and memory-related brain

10 disorders. Biomimetic neuroprostheses require real-time adaptation
11 to changes in the external environment, thus constituting an example
12 of a dynamic data-driven application system. As model fidelity
13 increases, so does the number of parameters and the complexity of
14 finding appropriate parameter configurations. Instead of adapting
15 synaptic weights via machine learning, we employed major
16 biological learning methods: spike-timing dependent plasticity and
17 reinforcement learning. We optimized the learning metaparameters
18 using evolutionary algorithms, which were implemented in parallel
19 and which used an island model approach to obtain sufficient speed.
20 We employed these methods to train a cortical spiking model to utilize
21 macaque brain activity, indicating a selected target, to drive a virtual
22 musculoskeletal arm with realistic anatomical and biomechanical
23 properties to reach to that target. The optimized system was able to
24 reproduce macaque data from a comparable experimental motor
25 task. These techniques can be used to efficiently tune the parameters
26 of multiscale systems, linking realistic neuronal dynamics to
27 behavior, and thus providing a useful tool for neuroscience and
28 neuroprosthetics.
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29 Introduction
30 Combining brain models and neuroprosthetics
31 The field of computational neuroscience has advanced

32 significantly beyond artificial neural networks by using

33 explicit experimental data to build biomimetic models of

34 brain dynamics that can then be used to perform tasks

35 [1–3]. The brain functions at many different but

36 interdependent spatial and temporal scales, ranging from

37 molecular interactions at the single neuron level, to

38 small circuits of thousands of neurons, to information

39 exchange between multiple areas involving millions of

40 neurons. Biologically realistic models permit us to

41 understand how changes at the molecular and cellular

42 levels effect alterations in the dynamics of local

43networks of neurons and interconnected brain areas.

44At the highest levels, they allow us to connect neural

45activity to theories of behavior, memory, and cognition.

46The recent introduction of large neuroscience projects

47in the United States and the European Union—Brain

48Research through Advancing Innovative

49Neurotechnologies (BRAIN) [4] and the Human Brain

50Project (HBP) [1], respectively—will provide an

51opportunity to rapidly gather new and more accurate

52data to incorporate into the multiscale models.

53On the other hand, neuroprostheses or brain-machine

54interfaces belong to an emerging field that aims at decoding

55electrical signals recorded from the brain. These techniques

56can, for example, be used to enable people with paralysis to

57control a robotic arm. Closed-loop neuroprosthetics move a

58step further, to encode neural signals such that the prostheticDigital Object Identifier: 10.1147/JRD.2017.2656758
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59 arm transmits information back into the brain via

60 neurostimulation, allowing users to feel what they are

61 touching. This technology, which would have seemed like

62 science fiction not many years ago, is already being tested in

63 humans and has the potential to improve the lives of millions

64 of people with paralysis [5]. Additional ongoing research is

65 examining applications to other brain disorders, including

66 precisely stimulating brain circuits to bring about memory

67 restoration in patients with amnesia [6].

68 Embedding biomimetic brain models in neuroprosthetic

69 systems has the potential to significantly improve their

70 performance [7–9]. In our paradigm, biological brain

71 circuits interact directly with biomimetic brain simulations,

72 thereby employing biological mechanisms of co-adaptation

73 and learning to achieve a functional task in a biological

74 manner. Importantly, both networks employ neuronal

75 electrical impulses or spikes to process information. This

76 enables activity from the real brain to be seamlessly

77 decoded by the model, and uses the simulated neural

78 patterns to directly stimulate the brain. Potential

79 applications of this approach are numerous, one of the

80 most promising being the development of biomimetic

81 brain-machine interfaces for people with paralysis. The

82 biomimetic model can employ action selection signals from

83 the patient’s brain to generate naturalistic motor signals that

84 enable fine control of a prosthetic limb [7, 10, 11].

85 Similarly, the biomimetic model can be used to replace

86 and/or rehabilitate a damaged brain region [12–15]. To

87 achieve this, the biomimetic model can be connected to the

88 remaining brain regions and tuned to reproduce healthy

89 neural activity and stimulate the damaged region, restoring

90 normal brain function.

91 Neuroprostheses based on biomimetic brain models are a

92 clear example of a dynamic data-driven application system

93 (DDDAS). They require simulation of a multiscale neural

94 system in real time, while continuously learning and

95 adapting the model parameters, based both on the neural

96 activity from the real brain and on sensory feedback from

97 the environment. We demonstrate here that combining the

98 advantages of online biological learning methods [spike-

99 timing dependent plasticity (STDP) and reinforcement

100 learning] with those of an offline batch method

101 (evolutionary algorithm optimization) can be an effective

102 approach to building biomimetic neuroprostheses.

103 Biological learning and evolutionary optimization
104 The nervous systemmakes use of sensory information to

105 rapidly produce behaviorally desirable movements, important

106 for avoiding predators, finding shelter, and acquiring food.

107 Primates use environmental sensory information to control

108 armmovements to reach towards desirable targets.

109 Reinforcement learning via dopamine-modulated synaptic

110 plasticity is one type of learning that is important in producing

111 movements towards goals [16, 17]. Various studies of

112reinforcement learning-basedmotor learning have shown that

113the process begins with random exploratory movements that

114may be rewarded or punished via the dopamine

115neuromodulatory error signal [18]. A Hebbian or spike-

116timing dependent associated eligibility trace provides credit

117assignment [17, 19], determining which synaptic connections

118were responsible for the actions and should be strengthened or

119weakened. In primates, frontal areas, including primarymotor

120cortex (M1), are innervated by dopaminergic projections

121from the ventral tegmental area (VTA). These projections

122have been shown to contribute toM1 plasticity [20], and to be

123necessary for motor skill learning but not for subsequent

124execution of the learned task [21].

125These biological learning methods can be used in

126biomimetic neuroprosthetic systems to learn associations

127between real brain activity, a multiscale brain model, and

128environmental effectors, such as a prosthetic limb. The

129brain model synaptic connections could be adapted to map

130brain activity encoding the patient’s intentions to motor

131commands that drive the prosthetic limb. Reward signals

132recorded from the real brain could even provide the

133dopamine modulatory signals used to train the brain model

134via reinforcement learning [22, 23]. However, the

135reinforcement learning method itself also requires finding

136an optimal set of metaparameters that will maximize its

137efficiency. Examples of these metaparameters include the

138learning rate, the time window of eligibility traces, or the

139amplitude of the exploratory movements. Finding optimal

140solutions in such a complex multiscale system can be

141extremely time-consuming and inefficient if done manually.

142One popular approach to optimizing complex

143multidimensional systems is the use of evolutionary

144algorithms, which use mechanisms inspired by biological

145evolution. Within the field of computational neuroscience,

146evolutionary algorithms have been predominantly applied

147to the tuning of single-cell models or small groups of

148neurons [24, 25]. Here, we use them for automated tuning

149of biological reinforcement learning metaparameters in

150large-scale spiking networks with behavioral outputs. A

151fitness function is used to measure the system’s

152performance associated with each set of metaparameters.

153This constitutes an example of using evolutionary

154optimization for indirect encoding, as opposed to direct

155encoding, since we are tuning metaparameters instead of

156directly tuning the network synaptic weights. Indirect

157encoding methods have the advantage of reducing the

158size of the search space, here from thousands of

159synaptic weights to a small set of metaparameters. In

160the present context, the use of indirect encoding was

161also motivated by our desire to use a biologically

162realistic learning rule.

163Parallelization is usually required to make evolutionary

164algorithms a practicable solution to complex optimization

165problems. The advancement and proliferation of parallel
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166 computing architectures, such as high-performance

167 computing (HPC) clusters and graphics processing units

168 (GPUs), has provided a substrate for the implementation of

169 parallelized evolutionary algorithms. Here, we parallelize

170 an evolutionary algorithm to run in a large HPC cluster,

171 significantly increasing the speed of the automated

172 parameter tuning framework. We further reduce execution

173 time by employing an island model implementation, a

174 parallel computing technique that maximizes the efficiency

175 of the HPC [26].

176 A similar version of this evolutionary optimization

177 method was employed in our previous work [10], although

178 a detailed description was not included. Here, we have

179 improved the algorithm implementation by making use of

180 an island model, and have applied it to a significantly more

181 complex problem. Compared to [10], the current network

182 contains 10 times more neurons, adds a spinal cord and

183 modulatory input from real multielectrode recordings, and

184 can learn to reach two targets instead of one.

185 In related work, a parallel evolutionary algorithm for

186 spiking neural networks was implemented to execute on

187 GPUs for two different scenarios: indirect encoding for a

188 visual system model [27], and direct encoding for a

189 sensorimotor system model [28]. Our methodology differs

190 in that it is implemented on large HPCs instead of GPUs,

191 employs island model techniques to increase efficiency, and

192 uses indirect encoding for a brain model with reinforcement

193 learning in the context of a neuroprosthetic system.

194 Motor system neuroprosthesis
195 We evaluated the evolutionary optimization method using a

196 biomimetic model of the motor system with over 8,000

197 spiking neurons and 500,000 synaptic connections (see

198 Figure 1). The main component was a biologically realistic

199 model of primary motor cortex (M1) microcircuits based on

200 brain activity mapping [29–31]. This was connected to a

201 spiking model of the spinal cord and a realistic virtual

202 musculoskeletal arm. The arm model included anatomical

203 and mechanical properties of bone, joint, muscle and

204 tendon, as well as inertial dynamics of arm motion.

205 Building on previous work [32, 33], we used reinforcement

206 learning with STDP to adapt the motor system synaptic

207 weights to drive the virtual arm to reach a target.

208 Previously, we have shown that the virtual arm trajectories

209 can be reproduced in real time by a robotic arm [10]. We

210 therefore added the missing piece to obtain a

211 neuroprosthetic system: we modulated the M1 network with

212 activity recorded from macaque monkey premotor cortex

213 [11]. These inputs acted as an action selection signal that

214 dictated which target the virtual/robot arm had to reach. We

215 have previously shown spiking activity from multielectrode

216 recordings can be fed in real time to spiking network

217 simulations [34]. In the future, the system could be

218 extended to form a closed-loop neuroprostheses by

219neurostimulating the macaque monkey brain based on

220activity from the biomimetic network model.

221Reinforcement learning was now responsible not only for

222learning appropriate motor and proprioceptive mappings

223between the M1, spinal cord and arm models, but also to

224associate premotor cortex spiking patterns to distinct

225reaching actions. This posed a significant challenge due to

226the complex multiscale dynamics, ranging from single

227neurons firing, to microcircuit oscillations, to

228musculoskeletal arm forces. The parallel evolutionary

229optimization method proposed managed to find

230reinforcement learning metaparameters that resulted in

231successful training of the system. The trained M1 network

232drove the arm to the target indicated by the recorded

233premotor cortex input. Arm trajectories and model neural

234activity were consistent with data from a similar

235experimental motor task [22].

236The biological detail of our model is higher than that of

237previously published neural models that reproduce a similar

238reaching task: we implement a spiking neuron model with

239different synaptic receptors and many biological features,

240versus, for example, rate models [28]; we have cortical-

241based recurrent circuits with different cell types, versus

242more artificial task-oriented circuitries [7, 35, 36]; and we

243model anatomical and biophysical musculoskeletal arm

244properties, as opposed to simpler kinematic arm models

245[28, 35, 36]. Nonetheless, these models include regions that

246we do not explicitly implement, such as a population to

247encode reward information [35], posterior parietal cortex

248for sensory integration [28], or a cerebellum [36, 37].

249The rationale for employing biologically detailed models

250is that it facilitates direct bidirectional interaction with the

251brain biological networks, including making use of synaptic

252plasticity at the single cell level to learn a specific behavior.

253We argue that for the model to respond in a

254biophysiologically realistic manner to ongoing dynamic

255inputs from the real brain, it needs to reproduce as closely

256as possible the structure and function of cortical cells and

257microcircuits.

258This work demonstrates how to use parallel evolutionary

259algorithms to automate parameter tuning of reinforcement

260learning in multiscale brain models. This approach enabled

261translation of brain neural activity into realistic cortical

262spiking firing patterns that provided different motor

263commands to an external environment effector, thereby

264providing a useful tool to understand the sensorimotor

265cortex and develop neuroprosthetic systems.

266In the remainder of this paper, we first describe the motor

267systemmodel inmore detail, as well as the biological learning

268methods and the evolutionary optimization approach.We

269then show the results of the optimization process, including

270the evolution of fitness over generations, as well as several

271performance measures of the optimizedmodels. We end by

272discussing some implications of our work.
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273 Methods
274 Motor system model
275 We implemented a model of the motor system with the

276 following components: dorsal premotor cortex (PMd),

277 primary motor cortex (M1), spinal cord, and

278 musculoskeletal arm (Figure 1). PMd modulated M1 to

279 select the target to reach, M1 excited the descending spinal

280 cord neurons that drove the arm muscles, and received arm

281 proprioceptive feedback (information about the arm

282 position) via the ascending spinal cord neurons. Here, we

283 describe each of the components in more detail.

284 The large-scale model of M1 consisted of 6,208 spiking

285 Izhikevich model neurons [38] of four types: regular-firing

286 and bursting pyramidal neurons, and fast-spiking and low-

287 threshold-spiking interneurons. These were distributed

288 across cortical layers 2/3, 5A, 5B, and 6, with cell

289 properties, proportions, locations, connectivity, weights and

290 delays drawn primarily from mammalian experimental data

291 [30, 31], and described in detail in previous work [29]. The

292 network included 486,491 connections, with synapses

293 modeling properties of four different receptors: AMPA

294 (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid),

295 NMDA (N-Methyl-D- aspartic acid), GABAA (type A

296 gamma-aminobutyric acid), and GABAB (type B gamma-

297 aminobutyric acid). The model exhibits realistic

298 physiological properties, including the distribution of firing

299 rates and local field potential spectra.

300 PMd was modeled using a single population of 736 spike

301 generators that reproduced activity recorded from the

302 associated brain area of a macaque monkey during a

303reaching task. These were connected to M1 layer 5A cells

304via conductance-based synapses to provide the modulatory

305input used for target selection.

306A simple model of spinal cord circuits was implemented

307using 1,536 regular spiking neurons, distributed into two

308descending populations and one ascending population.

309Corticospinal neurons in layer 5B were connected to

310excitatory and inhibitory descending spinal cord

311populations segregated into four muscle group

312subpopulations: flexor and extensor muscles of the shoulder

313and elbow. Regular-firing excitatory subpopulations

314modeled lower motoneurons by providing excitation to the

315corresponding muscles. Low-threshold spiking inhibitory

316subpopulations innervated the antagonist muscle

317motoneurons, modeling reciprocal inhibition and

318preventing antagonist muscles from contracting

319simultaneously. Proprioceptive feedback from the arm was

320encoded in an ascending spinal cord population, which then

321projected to M1 layer 2/3.

322The virtual arm is a biomechanical model of human arm

323musculoskeletal system, constrained to two degrees of

324freedom in the horizontal plane. It includes 8 bones, 7

325joints, and 14 muscle branches divided into four muscle

326groups: flexors and extensors of shoulder and elbow. Arm

327dynamics were calculated using an extended Hill-type

328muscle model [39], comprising two ordinary differential

329equations, which accounts for the force-length-velocity

330properties of muscle fibers and the elastic properties of

331tendons. The model takes as input an external muscle

332excitation signal, and calculates at each time step the

Figure 1

Overview of neuroprosthetic motor system model. Recordings from premotor cortex modulated the primary motor cortex (M1) to select the target to

reach. M1 excited the descending spinal cord neurons that drove the arm muscles, and received arm proprioceptive feedback via the ascending spinal

cord neurons. The virtual arm trajectory can be reproduced by a robotic arm in real time. To close the loop, neurostimulation could be fed back into

the brain based on the motor cortex model activity. L2/3, L5A, L5B, and L6 refer to cortical layers.
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333 overall muscle-tendon forces acting on bones. These forces

334 then allow the arm model to obtain the position, velocity,

335 and acceleration of each of the joints via a recursive

336 Newton-Euler algorithm [40]. The model joint kinematics

337 and dynamics were based on anatomical studies and match

338 experimental measurements of an average-sized human

339 adult male. A robotic arm can be made to follow the spiking

340 network-driven virtual arm trajectories in real time.

341 Although the robot arm was successfully tested with the

342 current setup, the experiments in this study do not include

343 the robot arm in the loop. More details on the virtual and

344 robot arm implementations and their interface to the

345 neuronal network can be found in our previous work [10].

346 Biological reinforcement learning
347 We modeled the brain’s dopamine-based reward circuits by

348 providing a global reinforcement learning signal to

349 modulate plasticity in the cortical neuronal network [41].

350 This signal was based on the state of the environment,

351 which consisted of the virtual musculoskeletal arm and a

352 fixed target in the 2D plane. The system can also be

353 interpreted as an actor-critic reinforcement learning

354 framework, where the neuronal network constitutes the

355 actor, which maps sensory feedback to motor commands

356 that alter the environment (control policy); and the reward

357 system constitutes the critic (value function), which shapes

358 the actor via plasticity to maximize its future rewards [35].

359 The aim was to learn a mapping between the M1 and spinal

360 cord circuits that allowed driving the arm to a target, as well

361 as a mapping between PMd and M1 that mediated target

362 selection.

363 The reinforcement learning signal was calculated at short

364 intervals (range 50 to 100 ms, optimized via the evolutionary

365 algorithm) based on the distance between the virtual hand

366 and the target. If the hand was getting closer to the target,

367 then synapses involved in generating that movement were

368 rewarded; if the hand was getting farther, those synapses

369 were punished. To decide which synapses were responsible

370 for the previous movement (credit-assignment problem), we

371 employed spike timing-dependent plasticity and eligibility

372 traces [19]. Eligibility traces are short-termmemory

373 mechanisms that record a temporal event, marking the

374 synapse as eligible for undergoing learning changes.

375 Synapses were tagged when a postsynaptic spike followed a

376 presynaptic spike within the STDP time window. If a global

377 modulatory signal was received within the eligibility time

378 window, a trace was imprinted on tagged synapses, leading

379 to an increase/long-term potentiation (for reward), or

380 decrease/long-term depression (for punishment) of the

381 weight [17]. Plasticity was present in the 158,114 excitatory

382 synapses interconnectingM1 and spinal cord, PMd andM1,

383 andM1 layers 2, 5A, and 5B.

384 We chose to reproduce the classical center-out reaching

385 task, where subjects start with their hand at a center

386position, and need to reach to one of two targets placed 15

387cm to the right or left [42–44]. During the training phase,

388exploratory movements of the arm were generated by

389randomly stimulating spinal cord subpopulations

390corresponding to different muscles. Exploratory behaviors

391facilitate learning linking a larger space of motor

392commands to its outcomes and associated rewards.

393After training, input from PMd should modulate M1

394activity and select which target the virtual arm will reach.

395To achieve this, activity from 96 PMd biological neurons of

396a macaque monkey was recorded during a center-out

397reaching task to left and right targets. PMd spike patterns

398were replicated using a model population of spike

399generators that provided input to the M1 L5A excitatory

400population. During training, the target to reach, rewarded

401via reinforcement learning, and the PMd input pattern were

402alternated every trial, in order to associate each PMd pattern

403to its corresponding target.

404The testing or evaluation phase consisted of two 1-second

405trials with PMd input patterns corresponding to the left and

406right targets. This means the trained network needs to be

407able to generate two distinct spiking patterns, which move

408the virtual arm in opposite directions, depending on the

409input spiking pattern received from PMd. During testing,

410arm movements were enabled only after the network had

411reached a steady state (after 250 ms), to avoid the bursts of

412activity during the initial transitory period. The system’s

413performance was quantified by calculating the time-

414averaged pointwise distance between the arm’s endpoint

415trajectory and the target.

416Parallel evolutionary optimization
417The efficiency of the biological reinforcement learning

418method used to train the motor system is significantly

419affected by the choice of its metaparameters. Therefore, to

420maximize the system performance, we must optimize the

421learning metaparameters within the permitted biologically

422realistic range. Manually tuning these metaparameters can

423be a time-consuming and inefficient approach. Evolutionary

424algorithms provide an automated method to search for the

425set of parameters that maximize the system’s performance,

426quantified using a fitness function. Following the principles

427of biological evolution, a population of individuals, each

428representing a set of genes or parameters, evolves over

429generations until one of them reaches a desired fitness level.

430At every generation, individuals are evaluated and selected

431for reproduction, produce new offspring by crossing their

432genes and applying random mutations, and are replaced by

433the fitter offspring.

434We employed evolutionary optimization to find

435reinforcement learning-related metaparameters that

436maximized the motor system performance. Importantly, we

437did not directly optimize the network synaptic weights

438(known as direct encoding), and instead we evolved the
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439 learning metaparameters of the model (indirect encoding).

440 We optimized a total of 10 metaparameters within a range

441 of values, such as the reinforcement learning interval or the

442 amplitude of exploratory movements The range of values

443 allowed for each metaparameter was based either on

444 realistic biological constraints (e.g., the duration of the

445 STDP or eligibility window), or on empirical observations

446 derived from previous exploratory simulations (e.g.,

447 training duration or motor command threshold). See

448 Table 1 for a list of metaparameters and their allowed range

449 of values.

450 To evaluate each individual, that is, each set of

451 metaparameters, we required a fitness function that

452 quantified how well reinforcement learning worked using

453 these metaparameters. Therefore, each evaluation consisted

454 of training the network via reinforcement learning, and

455 testing the reaching performance to the right and left targets

456 using the different target selection PMd input patterns. The

457 trained network had to generate spiking patterns that

458 resulted in the virtual arm reaching towards the target

459 indicated by the PMd input. The fitness function was

460 calculated as follows:

davg ¼ dleft þ dright
� �

=2
� �� jdleft � drightj

fitness ¼ 1 � davg � dmin

� �
= dmax � dminð Þ� �

;
462462

463 where dleft and dright represent the trajectory error, that is, the

464 time-averaged distance between the arm’s endpoint and the

465 left and right targets, respectively; davg represents the aver-

466 age trajectory error for both targets, and includes a term that

467 penalizes differences between the two trajectory errors to

468 reduce biases towards one of the targets; dmin represents the

469 trajectory error for a best case scenario, reaching in straight

470line from the center to the target, starting after 250 ms and

471assuming a maximum speed of 1.0 ms�1 and an acceleration

472of 5.0 ms�2; and dmax represents the trajectory error for a

473worst-case scenario, reaching to the opposite (wrong) target

474under the same conditions. Ergo, a fitness of 1 indicates a

475fast, straight line reach towards the correct targets, whereas a

476fitness of 0 indicates a fast straight line each towards the

477opposite targets. The evolutionary algorithm attempted to

478maximize the fitness of individuals, which resulted in mini-

479mizing the arm trajectory errors to both targets.

480Each phase of the evolutionary algorithm has several

481parameters that affect, for example, how many individuals

482are selected for reproduction, the rate of mutation, or how

483individuals are replaced after each generation. We

484implemented a canonical evolution strategy technique [45]

485with a population of 60 individuals, default selection (i.e.,

486all individuals are selected), “plus” replacement, and an

487internal adaptive mutation using strategy parameters. The

488“plus” replacement method means that only the fittest

489individuals will survive after each generation. In other

490words, out of 120 individuals (parents and offspring), only

491the 60 individuals with the highest fitness values will

492remain. Adaptive mutation means that a set of strategy

493parameters are used to determine the mutation rate of each

494gene or metaparameter i. The mutation rate is updated as

495follows:

p0i ¼ pi þ N 0; sið Þ;
497497

498where pi represents the ith parameter, Nð0; sÞ represents

499the standard normal distribution of mean 0 and standard

500deviation s, and si is the standard deviation associated with

501the ith parameter. The strategy parameters are evolved along

502with the individuals using the following update equations:

Table 1 List of metaparameters optimized using the parallel evolutionary algorithm, including range and optimized

value to obtain fitness of 0.619.

6 : 6 S. DURA-BERNAL ET AL. IBM J. RES. & DEV. VOL. 61 NO. 2-3 PAPER 6 MARCH/MAY 2017



s0
i ¼ si þ et �N 0;1ð Þþt0 �Nð0;1Þ

s0
i ¼ max s0

i; "
� �

;
504504

505 where the minimum allowed strategy parameter " is 10�5; the

506 learning parameters t ¼ 1=ð2�n1=2Þ1=2 and t0 ¼ 1=ð2�nÞ1=2;
507 and n is the number of parameters [45].

508 The parallel implementation of the evolutionary

509 algorithm is illustrated in Figure 2. Obtaining an individual

510 with a high fitness (optimized set of metaparameters)

511 requires running the algorithm for many generations.

512 However, each individual evaluation can take more than 1

513 hour if run serially (since the model must be trained and

514 tested), making it an unfeasible option. Parallel computing

515techniques, such as GPUs, have been previously used to

516reduce execution time in similar problems [27]. Here, we

517employed an HPC cluster to execute the fitness evaluations

518in parallel, drastically reducing computation time. To

519implement the evolutionary algorithm we employed the

520open source Python library Inspyred (https://pypi.python.

521org/pypi/inspyred), and adapted it to exploit the parallel

522computation capabilities of the HPC. A custom Inspyred

523Evaluator function was defined to submit each function

524evaluation as a job to the HPC queue. Each fitness evaluation

525consisted of running a motor system simulation to train and

526test reaching to the two targets. The network model was

527parallelized [46] to run on 16 cores, and one additional core

Figure 2

Parallel implementation of the island model evolutionary algorithm. A set of 6 islands is instantiated via multiprocessing parallel jobs, each with a

population of 10 individuals that evolve independently. Information between islands is exchanged via migration of individuals implemented using a

shared queue. Individuals are selected and mutated using internal adaptive strategy parameters to create new offspring. New individuals are evaluated

to obtain their fitness values. Evaluation of fitness functions occurs in parallel in the HPC using PBS/SLURM, with each evaluation consisting of train-

ing the motor system model via reinforcement learning (RL), and testing its reaching performance to each of the targets. In every generation, the popu-

lation is replaced by the fittest individuals out of all the parents and offspring.

IBM J. RES. & DEV. VOL. 61 NO. 2-3 PAPER 6 MARCH/MAY 2017 S. DURA-BERNAL ET AL. 6 : 7



528 was used for the virtual musculoskeletal arm. The job

529 scheduling system, Portable Batch System (PBS), together

530 with the resource manager, Simple Linux��Utility for
531 ResourceManagement (SLURM), were then responsible for

532 distributing the jobs across all computing nodes and

533 returning the results to the master node. The Inspyred

534 Evaluator function waited for all jobs to finish before

535 submitting the fitness evaluations for the next generation.

536 Evolutionary algorithm parallelization typically results in

537 a bottleneck effect, as moving onto the next generation

538 requires waiting for the slowest individual to finish its fitness

539 evaluation (synchronous master-slave mode). Given that one

540 of the metaparameters evolved is the training time, the delay

541 between the fastest and slowest fitness evaluation in

542 populations of 60 individuals can be significant. A useful

543 parallel computing technique to solve this problem is the use

544 of island models. Under this paradigm, the population is

545 divided into several subpopulations (islands), and each one

546 evolves independently. This increases the overall diversity

547 and allows efficient parallelization, given that each island

548 can evolve asynchronously, waiting only for the slowest

549 individual within its population. To add cooperation between

550 islands, and thus regain the benefits a larger population size,

551 migration between islands occurs periodically. Migration

552 entails moving a set of randomly selected individuals to a

553 temporary migration pool, and replacing themwith different

554 individuals from that pool [47].

555 Two parameters have a strong effect on the performance

556 of island models: the migration interval (or number of

557 generations between migrations) and the migration size (or

558 the number of individuals migrated each time). Research

559 has shown that island models with an appropriate balance

560 between these parameters are not only more

561 computationally efficient, but can improve the quality of

562 solutions obtained [26]. This results from achieving higher

563 diversity and exchanging enough information to combine

564 the partial results from each island. A study suggests that

565 best performance is achieved with moderate migration

566 intervals (5 to 10 generations) and small migration sizes

567 (5% to 10% of population size) [48]. Here, we chose to

568 divide our single 60-individual population into 6 islands

569 with 10 individuals each, with a migration interval of 5

570 generations and a migration size of 10%. The island model

571 was implemented using Python’s multiprocessing library,

572 where each island was run as separate job. Migration

573 between islands was implemented via a custom Inspyred

574 Migrator class, which employed a communication queue,

575 shared by all jobs/islands, to exchange random individuals

576 periodically.

577 The spiking network simulations were run in parallel

578 using NEURON 7.4 [49] and Python 2.7, on the San Diego

579 Supercomputer Center (SDSC) Comet HPC system with 2.5

580 GHz Intel Xeon�� E5-2680v3 processors. The code for the
581 biomimetic neuroprosthetic system, including that used for

582the evolutionary optimization process, is open source and

583available via ModelDB (ht _tps:/ _/senselab.med.yale.edu/

584ModelDB/showModel.cshtml?model¼194897).

585Results
586Fitness evolution
587The evolutionary optimization algorithm increased the

588mean and best fitness values of the population over

589generations (Figure 3, black lines at bottom). Fitness values

590during the first generations exhibited a large variance

591(inappreciable/imperceptible in figure), which was rapidly

592reduced and kept approximately constant for the remaining

593generations. This is a consequence of the evolution strategy

594implemented, which only keeps the fittest individuals, and

595modifies them gradually in small search steps that result in

596small fitness changes. The best fitness value was 0.619,

597which was obtained by an individual of island 2 after 942

598generations. To provide further intuition of the meaning of

599fitness values, consider that for reaching trajectories

600measured experimentally (see following section for details),

601the fitness value would be 0.6845. Also, if the arm remained

602at the center, the fitness value would be 0.508.

603Both mean and best fitness values of the 6 island

604subpopulations (with 10 individuals each) also increased

605progressively over generations (Figure 3, blue lines). This

606monotonic increase was ensured by the “plus” replacement

607method, which only allows the fittest individuals to survive.

608Islands evolved asynchronously, therefore producing

609different numbers of generations within the same execution

610time. Although islands evolved independently, random

611migration occurred every 5 generations and increased the

612diversity of the islands by introducing an external

613individual. Therefore, although the highest fitness values

614were predominantly obtained by island 2; other islands

615could have had an effect via migration.

616Parallelization of the evolutionary optimization process

617happened at three levels. First, each fitness evaluation

618consisting of a NEURON simulation to train and test the

619systemwas parallelized to use 16 cores. Second, the 10 fitness

620evaluations required by each island every new generation

621were also executed in parallel. Finally, the 6 islands were also

622executed as parallel processes. Every level of parallelization

623provided a speedup compared to the corresponding serial or

624sequential equivalent version (Table 2).

625The speedup achieved by parallelizing each simulation

626on 16 cores was sublinear (11:3�), due to some fixed

627computational overhead to run and interface with the virtual

628arm, distribute cells across nodes and gather the spikes

629back. Parallelizing the execution of the 10 individuals per

630island also resulted in a sublinear speedup (5:8�), since

631advancing to the next generation required evaluating all

632individuals, which implies waiting for the slowest one.

633Finally, the speedup gained by parallelizing islands was

634linear (6:0�), since islands evolved independently—they
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635 can advance to the next generation once its 10 individuals

636 have been evaluated, without depending on the stage of the

637 remaining islands. In contrast, the single population

638 approach (no islands) required the full population of 60

639individuals to be evaluated each generation, leading to a

640strongly sublinear speedup—60 times more cores only

641achieved a speedup of 20:0�. The island model technique

642increased the speedup by a factor of 1.74. Overall, the island

Figure 3

Evolution of the average (solid lines, with shaded areas showing standard deviation) and best (dashed lines) fitness values over 1,000 generations, for

each island (blue) and the entire population (black, at bottom). The width of shaded areas corresponds to the standard deviation of the fitness of indi-

viduals in each island. Each individual consists of a different set of metaparameters, which are evaluated using a fitness function that reflects the

degree of accuracy of the resulting arm trajectory.

Table 2 Speedup achieved by parallelization of the model and evolutionary optimization process for a population of

60 individuals (6 islands).

IBM J. RES. & DEV. VOL. 61 NO. 2-3 PAPER 6 MARCH/MAY 2017 S. DURA-BERNAL ET AL. 6 : 9



643 model technique together with parallelization of the model

644 and the optimization process yielded a speedup of 393:2�
645 over the single-core sequential approach (see Table 2).

646 Optimized model performance
647 The list of metaparameters optimized, the range of values

648 explored for each, and the optimal set of values

649 corresponding to the individual with the highest fitness, are

650 shown in Table 1. To provide a better understanding of the

651 effect of each metaparameter, Table 1 also includes the

652 fitness of the system when the minimum or maximum value

653 of each metaparameter was used (keeping the optimized

654 values for the remaining metaparameters). Exploratory

655 movements rate and training phase duration were the

656 metaparameters with the highest sensitivity, whereas the

657 system exhibited highest robustness to variations of

658 eligibility trace window duration and STDP window

659 duration. The optimized value of some metaparameters

660 coincided with its lower bound value (RL learning rate,

661 exploratory movements rate and PMd to M1 probability).

662 This could indicate that fitness can be improved by

663 increasing the range of values allowed for that

664 metaparameter. However, it could also simply be a

665 consequence of the stochastic nature of the evolutionary

666 algorithm. Interestingly, fitness values improved slightly

667 when using the minimum and maximum values of the

668eligibility trace window duration. This suggests that

669performing a standard parameter grid search after the

670evolutionary algorithm could be an effective method to

671further optimize the system’s performance.

672The optimized set of metaparameter values enabled the

673motor system model to learn the 2-target reaching task

674employing a biological reinforcement learning method.

675Premotor cortex (PMd) spiking activity, recorded from a

676macaque monkey during a reaching task, was used as a

677target selection input to the primary motor cortex (M1)

678model. After training, M1 populations produced different

679patterns of activity in response to the different PMd

680recorded spiking patterns for each target (Figure 4).

681We compared model results to macaque monkey

682experimental data, including arm trajectories and

683multielectrode array extracellular recordings of 110 neurons

684from M1 L5. The data corresponds to 10 trials of a center-

685out reaching task to right and left targets placed 4 cm away

686from the center. Arm trajectory errors were normalized by

687target distance to enable comparison between our motor

688system model and the experimental task. More details on

689the recording procedures and experimental task can be

690found in [22].

691The average firing rate during reaching of layer 5

692excitatory neurons for the 10 fittest models

693(14:0Hz � 4:5Hz) was similar to that measured

Figure 4

Time-resolved average firing rates of the premotor and motor cortical populations during reaching to two targets. Premotor spiking activity was

recorded from a macaque monkey, and is used as a target selection input to the primary motor cortex (M1) model. M1 population firing patterns are

modulated by the PMd input and result in different reaching movement (see Table 3). The initial 200 ms of transient activity did not directly affect

arm movements and are omitted.
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694 experimentally (19:3Hz � 1:4Hz). The distribution of

695 firing rates across cells also exhibited similar statistics for

696 the top 10 models (median ¼ 20:5Hz � 6:0Hz and

697 interquartile range ¼ 26:2 � 8:9Hz) and experiment

698 (median ¼ 16:0 � 1:4Hz and interquartile

699 range ¼ 17:3 � 1:9Hz).

700 When the model learning metaparameters corresponded

701 to individuals with the highest fitness values, the arm

702 trajectory errors were closer to those measured

703 experimentally (Table 3). Note that fitness takes into

704 account the trajectory error to both targets. Table 3 also

705 includes the model solutions that achieve the lowest

706 trajectory error for a given target, but these show high

707 trajectory errors to the alternative target. These results

708 further illustrate the complexity of finding networks capable

709 of generating good reaching trajectories to both targets.

710 Conclusion
711 Our research lays the groundwork for a new generation of

712 neuroprosthetic systems, where biological brain circuits

713 interact directly with biomimetic cortical models, and

714 employ co-adaptation and learning to accomplish a

715 functional task. Such a multiscale approach, ranging from

716 the cellular to the behavioral level, will furthermore provide

717 deeper insights into brain dynamics and have applications

718 for the diagnosis and restoration of brain disorders.

719 We have reproduced experimental data of a center-out

720 reaching task using a biomimetic model of the sensorimotor

721 system and a virtual musculoskeletal arm. To achieve this

722 we have combined a biological reinforcement learning rule,

723 used to adapt the synaptic weights of a cortical spiking

724 network model during training, with an evolutionary

725 algorithm to automatically tune the metaparameters of the

726 system. By evolving a set of indirect parameters or

727 metaparameters, instead of the direct network parameters

728 (i.e., the synaptic weights), we were able to employ a

729 biologically realistic sensorimotor learning approach,

730 namely, dopamine neuromodulation of STDP. Previously,

731 we had performed manual metaparameter tuning of similar

732 models [32, 33]. However, the increased complexity of the

733 virtual arm, which included many realistic biomechanical

734 properties—and the more challenging dynamics of the

735 detailed cortical model, spinal cord, and premotor cortex

736target selection inputs—required more sophisticated

737methods. We demonstrate the potential of parallel

738evolutionary algorithms in providing a solution to the

739problem of automated parameter optimization in

740biomimetic multiscale neural systems. The solutions found

741by our fitting algorithm yielded virtual arm trajectories and

742firing rates comparable to those measured experimentally.

743The parallel implementation of the evolutionary algorithm

744over a large HPC cluster was achieved by combining the

745flexibility of a Python-based optimization package

746(Inspyred), with the HPC job scheduling software. Multiple

747fitness functions (up to 60) were evaluated concurrently,

748where each function consisted of running a NEURON

749simulation, which in turn executed, and interacted with, an

750instance of the musculoskeletal armmodel, developed in

751Cþþ. This demonstrates the modularity and adaptability of

752the parallel optimization framework, and suggests it could be

753useful for a diverse range of models, including those

754developed in different languages. Furthermore, our

755evolutionary algorithm implementation made use of an

756island model technique, whereby the population is

757subdivided into smaller groups that evolve independently

758and periodically exchange information via migration. This

759method significantly reduced the execution time and

760increased the HPC CPU usage, by eliminating the bottleneck

761caused by the slowest individuals in large populations.

762Parallel evolutionary algorithms constitute an effective

763tool for automated parameter optimization in complex

764multiscale systems, such as those linking neural and

765behavioral models. These kinds of tools are likely to become

766indispensable in the development of hybrid co-adapting

767systems where in silico biomimetic brain models interact

768with real brains and prosthetic devices [13]. We previously

769showed that spikes frommultielectrode recordings in

770macaque monkeys can be fed in real-time into a biomimetic

771model [34]. In this work, we extend this to show how spiking

772data recorded frommacaque premotor cortex can be used to

773modulate a primary motor cortex (M1) model to select a

774desired target for reaching. This approach may enable the

775development of more advanced control of robotic limbs [10,

77650], and have clinical applications by employing electrical or

777optogenetic stimulation neural control methods [12, 14, 51]

778to restore normal function in damaged brains [52, 53].

Table 3 Comparison of normalized arm trajectory error for experimental data vs. the best and worst model solutions

(average and standard deviation).
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