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Abstract— In this paper we propose a kernel adaptive filter-
ing (KAF) approach to repair lesions via microstimulation in
a biomimetic spiking neural network of sensorimotor cortex.
The fundamental challenge of designing neuroprosthetics and
brain machine interfaces (BMIs) is the decoding of electrical
activity of neurons and behavior. For injured or damaged brain,
intracranial stimulation has the potential to modulate neural
activity to match meaningful and natural response or behavior.
In order to estimate the optimal microstimulation sequences, we
construct an inverse model of the target system. However, to
obtain sufficient data to learn the inverse, the neural system
much be stimulated or probed repeatedly. For real brains,
this is especially challenging and often unfeasible. Here,we
demonstrate that by applying KAF to a biomimetic brain and
realistic virtual musculoskeletal model, we are able to repair
simulated lesion and drive the virtual arm to perform the
correct motor task.

I. INTRODUCTION

Brain machine interfaces (BMIs) connect the brain with
external devices by establishing communication directly be-
tween the central nervous system and artificially engineered
neural prosthetics. Cognitive, motor, and sensory BMIs for
direct neural control have far reaching impact in rehabil-
itation and the understanding of brain functions [1]–[3].
At the core of the BMI framework is the decoding of
brain processes involved in communication and control tasks,
by learning the functional mapping between the electrical
activity of neurons and behavior.

Intracranial stimulation can deliver information directly to
the brain and drive neural response to match meaningful
activity. Applying optimally designed low-power electrical
signals (microstimulation) to intracranial microelectrodes
may elicit motor behaviors mimicking the responses to
natural sensory stimuli. This approach can be used to repair
brain lesions by compensating for the missing activity or by
inducing plasticity which can lead to recovery [4]–[6].

In [7], the kernel least mean square (KLMS) algorithm
[8], specifically the quantized KLMS (QKLMS) [9], is used
to estimate the dynamic nonlinear mapping from neural
responses to the stimuli. This approach exploits the fact
that linear signal processing in a reproducing kernel Hilbert
space (RKHS) corresponds to nonlinear processing in the

*This work was supported by DARPA Contract N66001-10-C-2008.
1K. Li and J. C. Prı́ncipe are with the Department of Electrical

and Computer Engineering (Computational NeuroEngineering Labora-
tory), University of Florida, Gainesville, FL 32611 USA (email: {likan,
principe}@ufl.edu).

2S. Dura-Bernal, J. T. Francis, and W. W. Lytton are with the Department
of Physiology and Pharmacology, State University of New York Downstate
Medical School, Brooklyn, NY 11203 USA.

input space and can be used in the adaptive inverse scheme
designed for controlling neural responses.

However, in order to obtain the optimal microstimulation
sequences, it is necessary to construct an inverse model of
the target system. For real brains, this is especially chal-
lenging, and often unfeasible, as it requires stimulating the
neural system repeatedly to obtain sufficient probing data for
reconstruction and depends on an unwarranted assumption
of stationarity. In contrast, a biomimetic model (BMM) of
the brain provides an attractive alternative testbed for under-
standing the interactions between ongoing neural activities
and artificial stimulations. Unlike real brains, in silico brains
can be probed extensively and precisely, providing access to
detailed information of all the neurons and synapses in the
network. Furthermore, different types of lesions and repair
methods can be simulated and evaluated with ease.

In this paper we repair a simulated lesion by optimizing a
set of microstimulation patterns that compensate for missing
activity in a spiking network model of sensorimotor cortex,
which controls a realistic virtual musculoskeletal arm to per-
form reaching tasks. Unlike [7] which continuously outputs
a set of microstimulation, here, we wish to derive a short
burst of repairing microstimulation in the early stage of each
reaching task which corrects the lesioned trajectory.

The BMM of sensory and motor cortex consists of several
hundred spiking model-neurons, as shown in Figure 1 [10],
[11]. It is trained using spike-timing dependent reinforcement
learning to drive a realistic virtual musculoskeletal arm in
a motor task requiring convergence on a single target. The
virtual musculoskeletal arm received input from the BMM
signaling neural excitation for each muscle. It then feeds
back realistic proprioceptive information, including muscle
fiber length and joint angles, which were employed in
the reinforcement learning process. Previous studies have
shown that this BMM can be interfaced in real time with
neurophysiological data from real brains [12], as well as with
a robotic arm [13], potentially allowing for a full closed-loop
prosthetic system.

Next, the trained network is perturbed by silencing 20
(10.42%) of its excitatory sensory (ES) cells in order to
simulate a lesion. After perturbation, the virtual arm reach
trajectory is severely impacted and the network is no longer
capable of completing the original reaching task. The re-
maining ES neurons or cells in the BMM are probed using
microstimulation pulse patterns. The network activity result-
ing from the probing sequences are then used to construct
an inverse model of the BMM’s motor layer kernel adaptive
inverse control of neural spatiotemporal spike patterns. The



Fig. 1. Overview of the system interfacing the biomimetic spiking
model and the virtual musculoskeletal arm. The virtual arm receives neural
excitation from the biomimetic model and feeds back the joint angles, used
in reinforcement learning algorithm, and the muscle lengths, used as part of
the sensorimotor mapping. For the biomimetic model, all incoming (green)
and outgoing (red) connections of a single ES neuron are shown. For the
virtual arm, all muscles are labeled in their correspondingcolor.

inverse model is constructed using a kernel adaptive filtering
technique and a tensor product kernel composed of individual
spike train kernels. It tries to predict the microstimulation
pulse pattern required to achieve a desired neural response
at the BMM motor layer, i.e., the pre-lesioned activity.

Simulation results show that by applying kernel adaptive
inverse control to the BMM we are able to optimize a set
of microstimulation patterns to repair the simulated lesion in
the model by restoring its correct reaching behavior. The rest
of the paper is organized as follows. In Section II, we outline
the kernel adaptive filtering algorithm in a spike train RKHS.
Section III presents the experimental results, and SectionIV
concludes this paper.

II. M ETHOD

The kernel framework [14] has far reaching impact in
classification, clustering, regression, and countless applica-
tions in machine learning, signal processing, and biomedical
engineering. The theory of adaptive signal processing is
greatly enhanced through the integration with the theory
of RKHS. By performing classical linear methods in a
potentially infinite dimensional feature space, kernel adaptive
filtering (KAF) [15] provides general nonlinear solutions in
the original input space.

In the family of kernel adaptive filters, the KLMS algo-
rithm [8] is the simplest. A finite impulse response (FIR) fil-
ter trained in the RKHS using the least mean squares (LMS)
algorithm, it can be viewed as a single-layer feedforward
neural network or perceptron. For a set ofn input-output
pairs{(u1, y1), (u2, y2), · · · , (un, yn)}, the input vectorui ∈
U ⊆ R

m (where U is a compact input domain inRm)
is mapped into a potentially infinite-dimensional feature
spaceF. Define aU → F mappingϕ(u), the feature-space
parametric model becomes

ŷ = f̂(u) = Ω
Tϕ(u) (1)

where Ω is the weight vector in the RKHS. Using the
Nonparametric Representer Theorem [16] and the “kernel
trick”, Eq. (1) can be written as

f̂(u) =
n
∑

i=1

αiK(ui, u) (2)

whereK(u, u′) is a Mercer kernel, corresponding to the inner
product〈ϕ(u), ϕ(u′)〉, andαi are the coefficients. The most
commonly used kernel is the Gaussian kernel

Ka(u, u′) = exp
(

−a‖u − u′‖2
)

(3)

wherea > 0 is the kernel parameter. To effective address
the growth of the radial basis function structure in KAF, the
QKLMS algorithm is used [9].

A. Reproducing kernel Hilbert space (RKHS) for spike trains
A spike train or sequence ofM ordered spike times, i.e.,

s = {tm ∈ T : m = 1, · · · ,M} in the intervalT = [0, T ],
can be viewed as a realization of an underlying stochastic
point process with conditional intensity functionλ(t|Hi

t ),
wheret ∈ τ = [0, T ] denotes the time coordinate andHi

t is
the history of the process up tot. Spike trains can be mapped
into a RKHS by defining a strictly positive definite kernel,
the Schoenberg kernel, between the conditional intensity
functions of two point processes [17] as

K(λ(t|Hi
t), λ(t|H

j
t )) = exp

(

−

∫

τ
λ(t|Hi

t)− λ(t|Hj
t )

2

σ2

)

. (4)

The intensity function can be estimated by convolvings(t)
with the smoothing kernelg(t), yielding

λ̂(t) = ΣM
m=1

g(t− tm), {tm ∈ T : m = 1, · · · ,M}. (5)

For simplicity the rectangular functiong(t) =
1

T
(U(t)− U(t− T )) (T ≫ the inter-spike interval) is

used, whereU(t) is a Heaviside function. Letsni (t) denote
the spike train for theith sample of thenth spiking unit.
The multi-unit spike kernel is taken as the unweighted sum
over the kernels on the individual units

K(si(t), sj(t)) =
∑

n

K(sni (t), s
n
j (t)). (6)

As shown in Figure 2, the goal is to learn an inverse model
of the plantP, which is the lesioned BMM motor layer, and
then apply the pre-lesioned motor response to the trained
multiple-input-multiple-output (MIMO) decoding model for
a set of optimized repair microstimulation.

III. R ESULTS

A BMM of sensorimotor cortex, which controls a realistic
virtual musculoskeletal arm, is trained to perform a one-
second target reaching task. The trained network is then
perturbed by silencing the first 20 (out of 192) excitatory
somatosensory neurons, in order to simulate a lesion. After
perturbation, the virtual-arm reach trajectory is severely
impacted and the BMM is no longer capable of completing
the original reaching task.

To construct the inverse model of the damaged neural
system, each of the remaining 172 ES cells were probed
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Fig. 2. System diagram of the adaptive inverse model of lesioned BMM.

Fig. 3. A. Raster plot of a multiple-neuron microstimulation probing
sequence. B. Virtual arm with superimposed hand trajectories for single-
neuron (light red) vs. multiple-neuron (dark red) microstimulation probing
sequences (original trajectory in blue; target in green).

individually and in small, random groups of 1-20 neurons,
with a fixed-duration (200 ms) microstimulation sequence
with pulse frequency of 250 Hz or 500 Hz for single cell
stimulation and a range of 100-500 Hz for group stimulation.
The BMM is stimulated starting at either the 200 ms or
400 ms mark of a 1 s trial. The combination of start
times, stimulation sites (individual neuron or group), and
pulse frequencies corresponds to a training set of 1376
unique microstimulation probing patterns. For each pattern,
the output motor-neuron population activities and the virtual
arm trajectories were recorded, as shown in Figure 3.

The 688 single-site stimulation sequences and their cor-

Fig. 4. Optimized microstimulation via an inverse model of the lesioned
biomimetic spiking model, constructed from single-neuronprobing sequence
bases. This output shows that a judiciously selected set of spiking stimula-
tion at the 500 ms mark (which is near the end of the allowed stimulation
window of 200-600 ms) should be sufficient to repair the lesion, i.e., push
the hand trajectory of the perturbed system onto the desiredtrack.

responding excitatory motor neuron population responses
(which drive the virtual arm) are used to build an inverse
model of the lesioned BMM using the QKLMS algorithm.
After training, the 96-channel-input-172-channel-output de-
coding model takes shifting windows (in increments of 1
ms) of spike trains of duration 200 ms from the BMM’s
motor-neuron population and returns the estimated optimal
microstimulation pattern: rates and starting times in a 400
ms window (from 200 ms to 600 ms). Since the system is
time-variant, the past 200 ms of the motor layer response is
used in a feedback, along with the current response, at the
input of the inverse model.

Figure 4 shows the estimated optimal microstimulation
by feeding the desired motor-neuron activity from the pre-
lesioned BMM into the inverse model. We see that the
estimated optimal microstimulation from the kernel adaptive
inverse model can be decomposed into distinct single-neuron
stimulation sites and pulse frequencies. Next, we applied the
predicted microstimulation from the inverse model to the
lesioned BMM. As shown in Figure 5, we are able to repair
the damage and drive the virtual arm to the correct target. By
judiciously selecting a sub population (3 neurons out of 172)
of the excitatory sensory cells and stimulating them for only
a short period of time (100 ms) in the early stage of a motor
task, we are able to restore the correct reaching behavior in
the lesioned spiking model of sensorimotor cortex.

IV. CONCLUSION

Using kernel adaptive filtering technique on spike trains,
we are able to map a desired neural response into an set of
repair microstimulation patterns for a lesioned biomimetic
spiking network. This work demonstrates the potential of cor-
tical prostheses to dynamically repair damaged brain regions



Fig. 5. A. Hand trajectory of the virtual arm and raster plot of the original (pre-lesioned) BMM trained using reinforcement learning. B. Hand trajectory
of the virtual arm and raster plot of the lesioned BMM. C. Handtrajectory of the virtual arm and raster plot of the repairedBMM (target in green).

and the corresponding motor behaviors using biomimetic
brain and musculoskeletal models. In the future, we will
extend this research to more complex motor tasks involving
multiple targets and different types of simulated lesions.
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