Repairing Lesions via Kernel Adaptive Inverse Control in a Bomimetic
Model of Sensorimotor Cortex*

Kan Li', Salvador Dura-Bernal Joseph T. Francis William W. Lytton?, and José C. Principe

Abstract— In this paper we propose a kernel adaptive filter-  input space and can be used in the adaptive inverse scheme
ing (KAF) approach to repair lesions via microstimulation in designed for controlling neural responses.
a biomimetic spiking neural network of sensorimotor cortex However, in order to obtain the optimal microstimulation

The fundamental challenge of designing neuroprostheticsral it i t truct . del of
brain machine interfaces (BMIs) is the decoding of electrial sequences, 11 IS necessary 1o construct an Inverse model o

activity of neurons and behavior. For injured or damaged bran,  the target system. For real brains, this is especially chal-
intracranial stimulation has the potential to modulate newal  lenging, and often unfeasible, as it requires stimulatimg t
activity to match meaningful and natural response or behawr.  neural system repeatedly to obtain sufficient probing data f
In order to estimate the optimal microstimulation sequencs, we reconstruction and depends on an unwarranted assumption
construct an inverse model of the target system. However, to . : L .
obtain sufficient data to learn the inverse, the neural systa of Stat'?”a”ty; In contrast, 3 blomlmetl_c model (BMM) of
much be stimulated or probed repeatedly. For real brains, the brain provides an attractive alternative testbed fateun
this is especially challenging and often unfeasible. Herewe standing the interactions between ongoing neural a&viti
demonstrate that by applying KAF to a biomimetic brain and  and artificial stimulations. Unlike real brains, in siliccains
realistic virtual musculoskeletal model, we are able to repir a1 pe probed extensively and precisely, providing aceess t
simulated lesion and drive the virtual arm to perform the detailed information of all the neurons and synapses in the
correct motor task. X - .
network. Furthermore, different types of lesions and nepai
. INTRODUCTION methods can be simulated and evaluated with ease.
In this paper we repair a simulated lesion by optimizing a
Brain machine interfaces (BMIs) connect the brain withset of microstimulation patterns that compensate for missi
external devices by establishing communication direcély b activity in a spiking network model of sensorimotor cortex,
tween the central nervous system and artificially engirteergyhich controls a realistic virtual musculoskeletal arm &s-p
neural prosthetics. Cognitive, motor, and sensory BMIs foform reaching tasks. Unlike [7] which continuously outputs
direct neural control have far reaching impact in rehabily set of microstimulation, here, we wish to derive a short
itation and the understanding of brain functions [1]}-[3]pyrst of repairing microstimulation in the early stage offea
At the core of the BMI framework is the decoding ofeaching task which corrects the lesioned trajectory.
brain processes involved in communication and controliask The BMM of sensory and motor cortex consists of several
by learning the functional mapping between the electricg{yndred spiking model-neurons, as shown in Figdre 1 [10],
activity of neurons and behavior. [11]. Itis trained using spike-timing dependent reinfonemnt
Intracranial stimulation can deliver information dirgctb  |earning to drive a realistic virtual musculoskeletal am i
the brain and drive neural response to match meaningfylmotor task requiring convergence on a single target. The
activity. Applying optimally designed low-power electaic yijrtual musculoskeletal arm received input from the BMM
signals (microstimulation) to intracranial microelectes signaling neural excitation for each muscle. It then feeds
may elicit motor behaviors mimicking the responses t§ack realistic proprioceptive information, including roles
natural sensory stimuli. This approach can be used to repgser length and joint angles, which were employed in
brain lesions by compensating for the missing activity or byhe reinforcement learning process. Previous studies have
inducing plasticity which can lead to recovery [4]-{6]. shown that this BMM can be interfaced in real time with
In [7], the kernel least mean square (KLMS) algorithmheurophysiological data from real brains [12], as well ahwi
[8], specifically the quantized KLMS (QKLMS) [9], is used a robotic arm [13], potentially allowing for a full closeddp
to estimate the dynamic nonlinear mapping from neurgjrosthetic system.
responses to the stimuli. This approach exploits the fact Next, the trained network is perturbed by silencing 20
that linear signal processing in a reproducing kernel Hilbe (10.42%) of its excitatory sensory (ES) cells in order to
space (RKHS) corresponds to nonlinear processing in tR@nulate a lesion. After perturbation, the virtual arm teac
- trajectory is severely impacted and the network is no longer
otk sumored by DARPA Conlach G600 10,0300, capabie of completing the original reaching tack. The re-
and Computer Engineering (Computational NeuroEngingerirabora- Maining ES neurons or cells in the BMM are probed using
tory), University of Florida, Gainesville, FL 32611 USA (aih {likan, —microstimulation pulse patterns. The network activityules
principe} @ufl.edu). , _ ing from the probing sequences are then used to construct
S. Dura-Bernal, J. T. Francis, and W. W. Lytton are with thg&ement . , .
of Physiology and Pharmacology, State University of NewkYDownstate an inverse model of the BMM's motor Iayer kernel adaptlve
Medical School, Brooklyn, NY 11203 USA. inverse control of neural spatiotemporal spike patterie T



Biomimetic spiking model Virtual musculoskeletal arm where Q is the Welght vector in the RKHS. USing the
Possive muscies Nonparametric Representer Theorem [16] and the “kernel
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s et o mmm—p SN . trick”, Eq. (@) can be written as
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where/C(u, u’) is a Mercer kernel, corresponding to the inner

. oEm { information & . .
' , (nuscelengt nd R oo product(p(u), p(u’)), anda; are the coefficients. The most
Joint angles ) (long, lateral, medial) . .
. ’ commonly used kernel is the Gaussian kernel
Shoulder extensors:
iy Ka(u,u') = exp (—afu —u'||?) (3)

wherea > 0 is the kernel parameter. To effective address

Fig. 1. Overview of the system interfacing the biomimeticktly  the growth of the radial basis function structure in KAF, the
model and the virtual musculoskeletal arm. The virtual aeceives neural QKLMS algorithm is used [9]

excitation from the biomimetic model and feeds back thetjamgles, used

in reinforcement learning algorithm, and the muscle lesgtised as part of . . . .
the sensorimotor mapping. For the biomimetic model, albmmg (green) A Reproduq ng kernel Hilbert space (RKHS) for spi ketrains

and outgoing (red) connections of a single ES neuron are rshBar the A spike train or sequence df/ ordered spike times, i.e.,
virtual arm, all muscles are labeled in their correspondintpr. S = {tm cT :m= 1,--- 7]\4} in the interval7 = [0, T],
can be viewed as a realization of an underlying stochastic
point process with conditional intensity functiox(t|H;),
inverse model is constructed using a kernel adaptive figeri Wheret € 7 = [0, 7] denotes the time coordinate aif} is

: o e history of the process up toSpike trains can be mapped
technigue and a tensor product kernel composed OflndIVIdUI to a RKHS by defining a strictly positive definite kernel,

spike frain kernels. It tries to predict the microstimwati the Schoenberg kernel, between the conditional intensity
pulse pattern required to achieve a desired neural resporgfctions of two point processes [17] as
at the BMM motor layer, i.e., the pre-lesioned activity. . o

(L A(t|Hi) — Mt ) ) @

Simulation results show that by applying kernel adaptive xC(\(t|H;), A(t|H})) = exp -
inverse control to the BMM we are able to optimize a set 7
of microstimulation patterns to repair the simulated lasio  The intensity function can be estimated by convolvirg)
the model by restoring its correct reaching behavior. Tisé reyith the smoothing kernej(¢), yielding
of the paper is organized as follows. In Section I, we oetlin
the kernel adaptive filtering algorithm in a spike train RKHS ~ A(t) = S0_19(t —tp), {tm € T :m =1,--- , M}. (5)
Section Il presents the experimental results, and Se¢tion For simplicity the rectangular functiong(t) =

concludes this paper. +(U(t)—=Ut—T))(T > the inter-spike interval) is
used, wherdJ(¢) is a Heaviside function. Let?(¢) denote
Il. METHOD the spike train for theith sample of thenth spiking unit.

The kernel framework [14] has far reaching impact inThe multi-unit spike kernel is taken as the unweighted sum

classification, clustering, regression, and countlessiGpp over the kernels on the individual units

tion; in machine learning, signal prgcessjng, and biom?édic. K(si(t),s;(t) = ZIC(s?(t),s?(t)). (6)
engineering. The theory of adaptive signal processing is "

greatly enhanced through the integration with the theory As shown in FiguréR, the goal is to learn an inverse model

of RKHS. By performing classical linear methods in @y yhe plantP, which is the lesioned BMM motor layer, and
pote_nnally infinite d|men§|onal feature space, kernemda _then apply the pre-lesioned motor response to the trained
filtering (KAF) [15] provides general nonlinear solutions i multiple-input-multiple-output (MIMO) decoding model rfo

the original input space. o a set of optimized repair microstimulation.
In the family of kernel adaptive filters, the KLMS algo-

rithm [8] is the simplest. A finite impulse response (FIR) fil- 1. RESULTS
ter trained in the RKHS using the least mean squares (LMS) A BMM of sensorimotor cortex, which controls a realistic
algorithm, it can be viewed as a single-layer feedforwargirtual musculoskeletal arm, is trained to perform a one-
neural network or perceptron. For a setsofinput-output second target reaching task. The trained network is then
pairs{(ui, 1), (U2,y2), -, (Un,yn)}, the input vecto; €  perturbed by silencing the first 20 (out of 192) excitatory
U C R™ (whereU is a compact input domain ifR™)  somatosensory neurons, in order to simulate a lesion. After
is mapped into a potentially infinite-dimensional featurgerturbation, the virtual-arm reach trajectory is severel
spacel. Define aU — F mappingy(u), the feature-space impacted and the BMM is no longer capable of completing
parametric model becomes the original reaching task.
. - To construct the inverse model of the damaged neural
§=f(u) =" ¢(u) (1) system, each of the remaining 172 ES cells were probed
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Fig. 2. System diagram of the adaptive inverse model of hesioBMM.
Asoof - . T .. Fig. 4. Optimized microstimulation via an inverse model loé¢ fesioned
Glae e ’kﬁ%’éﬂc Bt - Inhibitory biomimetic spiking model, constructed from single-neupoobing sequence

h * Motor (IM.IML) bases. This output shows that a judiciously selected sepikihg stimula-

Excitator tion at the 500 ms mark (which is near the end of the alloweddttion
Motor (EKA, window of 200-600 ms) should be sufficient to repair the lesice., push
the hand trajectory of the perturbed system onto the desiaett.
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: : L i e e (which drive the virtual arm) are used to build an inverse
100 200 300 400 500 600 700 800 900 1000 model of the lesioned BMM using the QKLMS algorithm.
Time (ms) After training, the 96-channel-input-172-channel-outge-
coding model takes shifting windows (in increments of 1
ms) of spike trains of duration 200 ms from the BMM'’s
motor-neuron population and returns the estimated optimal
microstimulation pattern: rates and starting times in a 400
ms window (from 200 ms to 600 ms). Since the system is
time-variant, the past 200 ms of the motor layer response is
used in a feedback, along with the current response, at the
input of the inverse model.
. Figure[4 shows the estimated optimal microstimulation
S s o1 o0 0 oo o1 015 by feeding the desired motor-neuron activity from the pre-
hand x position (m) lesioned BMM into the inverse model. We see that the
, _ o N estimated optimal microstimulation from the kernel adagpti
Fig. 3. A Raster plot of a multiple-neuron microstimulatirobing inverse model can be decomposed into distinct single-meuro
sequence. B. Virtual arm with superimposed hand trajextofor single-
neuron (light red) vs. multiple-neuron (dark red) microstlation probing  Stimulation sites and pulse frequencies. Next, we applied t
sequences (original trajectory in blue; target in green). predicted microstimulation from the inverse model to the
lesioned BMM. As shown in Figule 5, we are able to repair
o ) the damage and drive the virtual arm to the correct target. By
individually and in small, random groups of 1-20 neuronsy,gjciously selecting a sub population (3 neurons out of)172
with a fixed-duration (200 ms) microstimulation sequencgg the excitatory sensory cells and stimulating them foyonl
with pulse frequency of 250 Hz or 500 Hz for single celly short period of time (100 ms) in the early stage of a motor

stimulation and a range of 100-500 Hz for group stimulationgsk we are able to restore the correct reaching behavior in
The BMM is stimulated starting at either the 200 ms Okpe |esioned spiking model of sensorimotor cortex.

400 ms mark of a 1 s trial. The combination of start

times, stimulation sites (individual neuron or group), and IV. CONCLUSION

pulse frequencies corresponds to a training set of 1376 Using kernel adaptive filtering technique on spike trains,

unique microstimulation probing patterns. For each pafterwe are able to map a desired neural response into an set of

the output motor-neuron population activities and theudrt repair microstimulation patterns for a lesioned biomimeti

arm trajectories were recorded, as shown in Fidiire 3. spiking network. This work demonstrates the potential of co
The 688 single-site stimulation sequences and their catical prostheses to dynamically repair damaged brain reggio
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Fig. 5. A. Hand trajectory of the virtual arm and raster plbttee original (pre-lesioned) BMM trained using reinforoemh learning. B. Hand trajectory
of the virtual arm and raster plot of the lesioned BMM. C. Harajectory of the virtual arm and raster plot of the repaiBMM (target in green).

and the corresponding motor behaviors using biomimetigs] w. Liu, P. Pokharel, and J. Principe, “The kernel leastamequare

brain and musculoskeletal models. In the future, we will  algorithm,"IEEE Transactions on Signal Processing, vol. 56, pp. 543-
. . . 554, 2008.

extend this research to more complex motor tasks involvin

: ; . ) B. Chen, S. Zhao, P. Zhu, and J. Principg@yantized kernel least
multiple targets and different types of simulated lesions. mean square algorithm, IEEE Transactions on Neural Networks and

REFERENCES

[1] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. Nicdig,
“Real-time control of a robot arm using simultaneously reled

neurons in the motor cortexNature Neuroscience, vol. 2, no. 7, pp.

6647670, Jul. 1999.

[2] T.W. Berger, M. Baudry, R.D. Brinton, J.-S. Liaw, V.Z. vmaarelis, Y.
Park, B.J. Sheu, and A.R. Tanguay Jr., “Brain-implantalienimetic
electronics as the next era in neural prosthetiBsgc. |EEE, vol. 89,
no. 7, pp. 9932?1012, 2001.

[8] M. S. Humayun, J. D.Weiland, G.Y. Fuji,
R.Williamson, J. Little, B. Mech, V. Cimmarusti, G. Van Boem
G. Dagnelie, and E. De Juan Jr., “Visual perception in a béindject
with a chronic microelectronic retinal prosthesisfs. Res., vol. 43,
pp. 2573?2581, Nov. 2003.

[4] A. Jackson, J. Mavoori, and E. Fetz, “Long-term motorterrplas-
ticity induced by an electronic neural implant\ature, vol. 444, pp.
5660, 2006.

[5] S. Dura-Bernal, K. Li, A. Brockmeier, C. C. Kerr, S. A. Neytin,
J. C. Principe, J. T. Francis, and W. W. Lytton, “Modulatiofi
virtual arm trajectories via microstimulation in a spikimgodel of
sensorimotor cortex"Computational Neuroscience, July 2014.

[6] S. Dura-Bernal, K. Li, A. Brockmeier, C. C. Kerr, S. A. Newtin, J.
C. Principe, J. T. Francis, and W. W. Lytton, “Repairing ¢e®s via
microstimulation in a spiking network model driving a viatuarm”,
Society for Neuroscience, November 2014.

[7] L. Li, I. M. Park, A. Brockmeier et al., “Adaptive inverseontrol of
neural spatiotemporal spike patterns with a reproducimgeteHilbert
space (RKHS) framework[EEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 21, no. 4, pp. 532?543, 2013.

R. Greenberg,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Learning Systems, vol. 23, no. 1, pp. 2232, Jan. 2012.

S. A. Neymotin, G. L. Chadderdon, C. C. Kerr, J. T. Franeind W.
W. Lytton, “Reinforcement learning of two-joint virtual @rreaching
in a computer model of sensorimotor corteXéural Computation,
vol. 25, no. 12, pp. 3263-3293, 2013.

S. Dura-Bernal, G. L. Chadderdon, S. A. Neymotin, Z. ifian, A.
Przekwas, J. T. Francis, and W. W. Lytton, “Virtual muscikistal
arm and robotic arm driven by a biomimetic model of sensofrimo
tor cortex with reinforcement learningfEEE Sgnal Processing in
Medicine and Biology Symposium, SPMB13 (2014).

G. Lee, A Matsunaga, S. Dura-Bernal, W. Zhang, W. W. dyftJ.
T. Francias, and J. A. B. Fortes, “Towards real-time commafion
between in vivo neurophysiological data sources and stoubzmsed
brain biomimetic models,Journal of Computational Surgery, vol. 3,
no. 12, 2014.

S. Dura-Bernal, G. L. Chadderdon, S. A. Neymotin, J. Tar€is,
and W. W. Lytton, “Towards a real-time interface between @ntstic
model of sensorimotor cortex and a robotic ariPgttern Recognition
Letters: Special Issue on Multimodal Interfaces, vol 36, no. 15, pp.
204-212, 2014.

B. Scholkopf and A. J. Smold,earning with Kernels, Support Vec-
tor Machines, Regularization, Optimization and Beyond, MIT Press,
Cambridge, MA, USA, 2001.

W. Liu, J. Principe, and S. HaykinKernel Adaptive Filtering: A
Comprehensive Introduction,Wiley, 2010

B. Scholkopf, R. Herbrich, and A. J. Smola, “A generefizepresenter
theorem”, irProc. 14th Annual Conference on Computational Learning
Theory, vol. 2111, pp 416-426, 2001.

A. R. C. Paiva, I. Park, and J. C. Prncipe, A reproduciregnkl
Hilbert space framework for spike train signal processihgural
Computation, vol. 21, no. 2, pp. 424449, 2009.



	INTRODUCTION
	Method
	Reproducing kernel Hilbert space (RKHS) for spike trains

	Results
	Conclusion
	References

