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Evolutionary algorithm optimization of biological learning parameters in a 
biomimetic neuroprosthesis 

S. Dura-Bernal, S.A. Neymotin, C.C. Kerr, S. Sivagnanam, A. Majumdar, J.T. Francis, W.W. 
Lytton  

Biomimetic simulation permits neuroscientists to better understand the complex brain neuronal 
dynamics. Embedding a biomimetic simulation in a closed-loop neuroprosthesis, which can read 
and write signals from the brain, will permit applications for restoration of motor, psychiatric and 
memory-related brain disorders. Biomimetic neuroprostheses require real time adaptation to 
changes in the external environment, thus constituting an example of a dynamic data-driven 
application system (DDDAS). As model fidelity increases, so does the number of parameters and 
the complexity of finding appropriate parameter configurations. Instead of adapting synaptic 
weights via machine learning, we employed major biological learning methods: spike-timing 
dependent plasticity and reinforcement learning. We optimized the learning metaparameters 
using evolutionary algorithms (EA), which were implemented in parallel and using an island 
model approach to obtain sufficient speed. We employed these methods to train a cortical spiking 
model to utilize macaque brain activity, indicating a selected target, to drive a virtual 
musculoskeletal arm with realistic anatomical and biomechanical properties to reach to that 
target. The optimized system was able to reproduce macaque data from a comparable 
experimental motor task. These techniques can be used to efficiently tune the parameters of 
multiscale systems linking realistic neuronal dynamics to behavior, thus providing a useful tool 
for neuroscience and neuroprosthetics. 
 

Introduction 
Combining brain models and neuroprosthetics 
The field of computational neuroscience has advanced tremendously beyond artificial neural 
networks by using explicit experimental data to build biomimetic models of brain dynamics that 
can then be used to perform tasks [1-3]. The brain functions at many different but interdependent 
spatial and temporal scales, ranging from molecular interactions at the single neuron level, to 
small circuits of thousands of neurons, to information exchange between multiple areas 
involving millions of neurons. Biologically realistic models permit us to understand how changes 
at the molecular and cellular levels effect alterations in the dynamics of local networks of 
neurons and interconnected brain areas. At the highest levels, they allow us to connect neural 
activity to theories of behavior, memory and cognition. The recent introduction of large 
neuroscience projects in the US and the EU – Brain Research through Advancing Innovative 
Neurotechnologies (BRAIN) [4] and Human Brain Project (HBP) [1], respectively – will provide 
an opportunity to rapidly gather new and more accurate data to incorporate into the multiscale 
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models. 

On the other hand, neuroprostheses or brain-machine interfaces belong to an emerging field 
which aims at decoding electrical signals recorded from the brain. These techniques can, for 
example, be used to enable people with paralysis to control a robotic arm. Closed-loop 
neuroprosthetics move a step further, to encode neural signals such that the prosthetic arm 
transmits information back into the brain via neurostimulation, allowing users to feel what they 
are touching. This technology, which would have seemed like science fiction not many years 
ago, is already being tested in humans and has the potential to improve the lives of millions of 
people with paralysis [5]. Additional research is ongoing to also look at applications to other 
brain disorders, including precisely stimulating brain circuits to bring about memory restoration 
in patients with amnesia [6]. 

Embedding biomimetic brain models in neuroprosthetic systems has the potential to significantly 
improve their performance [7-9]. In our paradigm, biological brain circuits interact directly with 
biomimetic brain simulations, thereby employing biological mechanisms of co-adaptation and 
learning to achieve a functional task in a biological manner. Importantly, both networks employ 
neuronal electrical impulses or spikes to process information. This enables activity from the real 
brain to be seamlessly decoded by the model, and using the simulated neural patterns to directly 
stimulate the brain. Potential applications of this approach are numerous, one of the most 
promising being the development of biomimetic brain-machine interfaces for people with 
paralysis. The biomimetic model can employ action selection signals from the patient’s brain to 
generate naturalistic motor signals that enable fine control of a prosthetic limb [7, 10, 11]. 
Similarly, the biomimetic model can be used to replace and/or rehabilitate a damaged brain 
region [12-15]. To achieve this, the biomimetic model can be connected to the remaining brain 
regions, tuned to reproduce healthy neural activity, and used to stimulate the damaged region, 
restoring normal brain function. 

Neuroprostheses based on biomimetic brain models are a clear example of a data-driven 
application system (DDDAS). They require simulation of a multiscale neural system in real time, 
while continuously learning and adapting the model parameters, based both on the neural activity 
from the real brain and on sensory feedback from the environment. We demonstrate here that 
combining the advantages of online biological learning methods -- spike-timing dependent 
plasticity (STDP) and reinforcement learning -- with those of an offline batch method -- 
evolutionary algorithm optimization -- can be an effective approach to building biomimetic 
neuroprostheses. 

Biological learning and evolutionary optimization 
The nervous system makes use of sensory information to rapidly produce behaviorally-desirable 
movements, important for avoiding predators, finding shelter, and acquiring food. Primates use 
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environmental sensory information to control arm movements to reach towards desirable targets. 
Reinforcement learning via dopamine-modulated synaptic plasticity is one type of learning that 
is important in producing movements towards goals [16, 17]. Various studies of reinforcement 
learning-based motor learning have shown that the process begins with random exploratory 
movements that may be rewarded or punished via the dopamine neuromodulatory error signal 
[18]. A Hebbian or spike-timing dependent associated eligibility trace provides credit assignment 
[17, 19], determining which synaptic connections were responsible for the actions and should be 
strengthened or weakened. In primates, frontal areas, including primary motor cortex (M1), are 
innervated by dopaminergic projections from the ventral tegmental area (VTA). These 
projections have been shown to contribute to M1 plasticity [20], and to be necessary for motor 
skill learning but not for subsequent execution of the learned task [21]. 

These biological learning methods can be used in biomimetic neuroprosthetic systems to learn 
associations between real brain activity, a multiscale brain model, and environmental effectors, 
such as a prosthetic limb. The brain model synaptic connections could be adapted to map brain 
activity encoding the patient’s intentions to motor commands that drive the prosthetic limb. 
Reward signals recorded from the real brain could even provide the dopamine modulatory 
signals used to train the brain model via reinforcement learning [22, 23]. However, the 
reinforcement learning method itself also requires finding an optimal set of metaparameters that 
will maximize its efficiency. Examples of these metaparameters include the learning rate, the 
time window of eligibility traces, or the amplitude of the exploratory movements. Finding 
optimal solutions in such a complex multiscale system can be extremely time-consuming and 
inefficient if done manually. 

One popular approach to optimizing complex multidimensional systems is the use of 
evolutionary algorithms, which use mechanisms inspired by biological evolution. Within the 
field of computational neuroscience, evolutionary algorithms have been predominantly applied 
to the tuning of single-cell models or small groups of neurons [24, 25]. Here we use them for 
automated tuning of biological reinforcement learning metaparameters in large scale spiking 
networks with behavioral outputs. A fitness function is used to measure the system’s 
performance associated with each set of metaparameters. This constitutes an example of using 
evolutionary optimization for indirect encoding, as opposed to direct encoding, since we are 
tuning metaparemeters instead of the network synaptic weights directly. Indirect encoding 
methods have the advantage of reducing the size of the search space, here from thousands of 
synaptic weights to a small set of metaparameters. In the present context, the use of indirect 
encoding was also motivated by our desire to use a biologically realistic learning rule. 

Parallelization is usually required to make evolutionary algorithms a practicable solution to 
complex optimization problems. The advancement and proliferation of parallel computing 
architectures, such as high performance computing (HPC) clusters and graphic processing units 
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(GPUs), has provided a substrate for the implementation of parallelized evolutionary algorithms. 
Here we parallelize an evolutionary algorithm to run in a large HPC cluster significantly 
increasing the speed of the automated parameter tuning framework. We further reduce execution 
time by employing an island model implementation, a parallel computing technique that 
maximizes the efficiency of the HPC [26].  

A similar version of this evolutionary optimization method was employed in our previous 
work [10], although a detailed description was not included. Here we have improved the 
algorithm implementation by making use of an island model, and have applied it to a 
significantly more complex problem. Compared to [10], the current network contains 10x more 
neurons, adds a spinal cord and modulatory input from real multielectrode recordings, and can 
learn to reach two targets instead of one.  

In related work, a parallel evolutionary algorithm for spiking neural networks was implemented 
to execute on GPUs for two different scenarios: indirect encoding for a visual system model [27], 
and direct encoding for a sensorimotor system model [28]. Our methodology differs in that it is 
implemented on large HPCs instead of GPUs, employs island model techniques to increase 
efficiency, and uses indirect encoding for a brain model with reinforcement learning in the 
context of a neuroprosthetic system. 

Motor system neuroprosthesis 
We evaluated the evolutionary optimization method using a biomimetic model of the motor 
system with over 8,000 spiking neurons and 500,000 synaptic connections (see Figure 1). The 
main component is a biologically realistic model of primary motor cortex (M1) microcircuits 
based on brain activity mapping [29-31]. This was connected to a spiking model of the spinal 
cord and a realistic virtual musculoskeletal arm. The arm model included anatomical and 
mechanical properties of bone, joint, muscle and tendon, as well as inertial dynamics of arm 
motion. Building on previous work [32,33], we used reinforcement learning with STDP to adapt 
the motor system synaptic weights to drive the virtual arm to reach a target. Previously, we have 
shown that the virtual arm trajectories can be reproduced in real time by a robotic arm [10]. We 
therefore added the missing piece to obtain a neuroprosthetic system: we modulated the M1 
network with activity recorded from macaque monkey premotor cortex [11]. These inputs acted 
as an action selection signal that dictated which target the virtual/robot arm had to reach. We 
have previously shown spiking activity from multielectrode recordings can be fed in real time to 
spiking network simulations [34]. In the future the system could be extended to form a closed-
loop neuroprostheses by neurostimulating the macaque monkey brain based on activity from the 
biomimetic network model.  

Reinforcement learning was now responsible not only for learning appropriate motor and 
proprioceptive mappings between the M1, spinal cord and arm models, but also to associate 
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premotor cortex spiking patterns to distinct reaching actions. This posed a significant challenge 
due to the complex multiscale dynamics, ranging from single neurons firing, to microcircuit 
oscillations, to musculoskeletal arm forces. The parallel evolutionary optimization method 
proposed managed to find reinforcement learning metaparameters that resulted in successful 
training of the system. The trained M1 network drove the arm to the target indicated by the 
recorded premotor cortex input. Arm trajectories and model neural activity were consistent with 
data from a similar experimental motor task [22]. 

The biological detail of our model is higher than that of previously published neural models that 
reproduce a similar reaching task: we implement a spiking neuron model with different synaptic 
receptors and many biological features, versus, for example, rate models [28]; have cortical-
based recurrent circuits with different cell types, versus more artificial task-oriented circuitries 
[7,35,36]; and model anatomical and biophysical musculoskeletal arm properties, as opposed to 
simpler kinematic arm models [28, 35, 36]. Nonetheless, these models include regions that we do 
not explicitly implement, such as a population to encode reward information [35], posterior 
parietal cortex for sensory integration [28], or a cerebellum [36, 37]. 

The rationale for employing biologically detailed models is that it facilitates direct bidirectional 
interaction with the brain biological networks, including making use of synaptic plasticity at the 
single cell level to learn a specific behavior. We argue that for the model to respond in a 
biophysiologically realistic manner to ongoing dynamic inputs from the real brain, it needs to 
reproduce as closely as possible the structure and function of cortical cells and microcircuits. 

This work demonstrates how to use parallel evolutionary algorithms to automate parameter 
tuning of reinforcement learning in multiscale brain models. This approach enabled translation of 
brain neural activity into realistic cortical spiking firing patterns that provided different motor 
commands to an external environment effector, thereby providing a useful tool to understand the 
sensorimotor cortex and develop neuroprosthetic systems. 

In the remainder of this paper, we first describe the motor system model in more detail, as well 
as the biological learning methods and the evolutionary optimization approach. We then show 
the results of the optimization process, including the evolution of fitness over generations, as 
well as several performance measures of the optimized models. We end by discussing some 
implications of our work. 

 

Methods 
Motor system model 
We implemented a model of the motor system with the following components: dorsal premotor 
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cortex (PMd), primary motor cortex (M1), spinal cord and musculoskeletal arm (Figure 1). PMd 
modulated M1 to select the target to reach, M1 excited the descending spinal cord neurons that 
drove the arm muscles, and received arm proprioceptive feedback (information about the arm 
position) via the ascending spinal cord neurons. Here we describe each of the components in 
more detail. 

The large-scale model of M1 consisted of 6,208 spiking Izhikevich model neurons [38] of four 
types: regular-firing and bursting pyramidal neurons, and fast-spiking and low-threshold-spiking 
interneurons. These were distributed across cortical layers 2/3, 5A, 5B and 6, with cell 
properties, proportions, locations, connectivity, weights and delays drawn primarily from 
mammalian experimental data [30,31], and described in detail in previous work [29]. The 
network included 486,491 connections, with synapses modeling properties of four different 
receptors: AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), NMDA (N-Methyl-
D- aspartic acid), GABAA (type A gamma-aminobutyric acid), and GABAB (type B gamma-
aminobutyric acid). The model exhibits realistic physiological properties, including the 
distribution of firing rates and local field potential spectra. 

PMd was modeled using a single population of 736 spike generators that reproduced activity 
recorded from the associated brain area of a macaque monkey during a reaching task. These were 
connected to M1 layer 5A cells via conductance-based synapses to provide the modulatory input 
used for target selection. 

A simple model of spinal cord circuits was implemented using 1,536 regular spiking neurons, 
distributed into two descending populations and one ascending population. Corticospinal neurons 
in layer 5B were connected to excitatory and inhibitory descending spinal cord populations 
segregated into four muscle group subpopulations: flexor and extensor muscles of the shoulder 
and elbow. Regular-firing excitatory subpopulations modeled lower motoneurons by providing 
excitation to the corresponding muscles. Low-threshold spiking inhibitory subpopulations 
innervated the antagonist muscle motoneurons, modeling reciprocal inhibition and preventing 
antagonist muscles from contracting simultaneously. Proprioceptive feedback from the arm was 
encoded in an ascending spinal cord population which then projected to M1 layer 2/3. 

The virtual arm is a biomechanical model of human arm musculoskeletal system, constrained to 
two degrees of freedom in the horizontal plane. It includes 8 bones, 7 joints, 14 muscle branches 
divided into 4 muscle groups: flexors and extensors of shoulder and elbow. Arm dynamics were 
calculated using an extended Hill-type muscle model [39], comprised of two ordinary differential 
equations, which accounts for the force-length-velocity properties of muscle fibers and the 
elastic properties of tendons. The model takes as input an external muscle excitation signal, and 
calculates at each time step the overall muscle-tendon forces acting on bones. These forces then 
allow to obtain the position, velocity and acceleration of each of the joints via a recursive 
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Newton-Euler algorithm [40]. The model joint kinematics and dynamics were based on 
anatomical studies and match experimental measurements of an average-sized human adult male. 
A robotic arm can be made to follow the spiking network-driven virtual arm trajectories in real 
time. Although the robot arm was successfully tested with the current setup, the experiments in 
this study do not include the robot arm in the loop. More details on the virtual and robot arm 
implementations and their interface to the neuronal network can be found in our previous work 
[10]. 

Biological reinforcement learning  
We modeled the brain’s dopamine-based reward circuits by providing a global reinforcement 
learning signal to modulate plasticity in the cortical neuronal network [41]. This signal was 
based on the state of the environment, which consisted of the virtual musculoskeletal arm and a 
fixed target in the 2D plane. The system can also be interpreted as an actor-critic reinforcement 
learning framework, where the neuronal network constitutes the actor, which maps sensory 
feedback to motor commands that alter the environment (control policy); and the reward system 
constitutes the critic (value function), which shapes the actor via plasticity to maximize its future 
rewards [35]. The aim was to learn a mapping between the M1 and spinal cord circuits that 
allowed driving the arm to a target; as well as a mapping between PMd and M1 that mediated 
target selection. 

The reinforcement learning signal was calculated at short intervals (range 50-100 mms, 
optimized via evolutionary algorithm) based on the distance between the virtual hand and the 
target. If the hand was getting closer to the target, then synapses involved in generating that 
movement were rewarded; if the hand was getting farther, those synapses were punished. To 
decide which synapses were responsible for the previous movement (credit-assignment 
problem), we employed spike timing dependent plasticity and eligibility traces [19]. Eligibility 
traces are short-term memory mechanisms that record a temporal event, marking the synapse as 
eligible for undergoing learning changes. Synapses were tagged when a postsynaptic spike 
followed a presynaptic spike within the STDP time window. If a global modulatory signal was 
received within the eligibility time window, a trace was imprinted on tagged synapses, leading to 
an increase/long-term potentiation (for reward), or decrease/long-term depression (for 
punishment) of the weight [17]. Plasticity was present in the 158,114 excitatory synapses 
interconnecting M1 and spinal cord, PMd and M1, and M1 layers 2, 5A and 5B. 

We chose to reproduce the classical center-out reaching task, where subjects start with their hand 
at a center position, and need to reach to one of two targets placed 15 cm to the right or left [42-
44]. During the training phase, exploratory movements of the arm were enforced by randomly 
stimulating spinal cord subpopulations corresponding to different muscles. Exploratory 
behaviors facilitate learning linking a larger space of motor commands to its outcomes and 
associated rewards. 
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After training, input from PMd should modulate M1 activity and select which target the virtual 
arm will reach. To achieve this, activity from 96 PMd biological neurons of a macaque monkey 
was recorded during a center-out reaching task to left and right targets. PMd spike patterns were 
replicated using a model population of spike generators that provided input to the M1 L5A 
excitatory population. During training, the target to reach, rewarded via reinforcement learning, 
and the PMd input pattern were alternated every trial, in order to associate each PMd pattern to 
its corresponding target. 

The testing or evaluation phase consisted of two 1-second trials with PMd input patterns 
corresponding to the left and right targets. This means the trained network needs to be able to 
generate two distinct spiking patterns, which move the virtual arm in opposite directions, 
depending on the input spiking pattern received from PMd. During testing, arm movements were 
enabled only after network had reached a steady state (after 250 ms), to avoid the bursts of 
activity during the initial transitory period. The system’s performance was quantified by 
calculating the time-averaged pointwise distance between the arms endpoint trajectory and the 
target. 

 

Parallel evolutionary optimization 
The efficiency of the biological reinforcement learning method used to train the motor system is 
significantly impacted by the choice of its metaparameters. Therefore, to maximize the system 
performance we must optimize the learning metaparameters within the permitted biologically 
realistic range. Manually tuning these metaparameters can be a time consuming and inefficient 
approach. Evolutionary algorithms provide an automated method to search for the set of 
parameters that maximize the system’s performance, quantified using a fitness function. 
Following the principles of biological evolution, a population of individuals, each representing a 
set of genes or parameters, evolves over generations until one of them reaches a desired fitness 
level. At every generation, individuals are evaluated and selected for reproduction, produce new 
offspring by crossing their genes and applying random mutations, and are replaced by the fitter 
offspring. 

We employed evolutionary optimization to find reinforcement learning-related metaparameters 
that maximized the motor system performance. Importantly, we did not directly optimize the 
network synaptic weights (known as direct encoding), instead we evolved the learning 
metaparameters of the model (indirect encoding). We optimized a total of 10 metaparameters 
within a range of values, such as the reinforcement learning interval or the amplitude of 
exploratory movements The range of values allowed for each metaparameter was based either on 
realistic biological constraints (e.g. the duration of the STDP or eligibility window), or on 
empirical observations derived from previous exploratory simulations (e.g. training duration or 
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motor command threshold). See Table I for a list of metaparameters and their allowed range of 
values. 

To evaluate each individual, that is, each set of metaparameters, we required a fitness function 
that quantified how well reinforcement learning worked using these metaparameters. Therefore, 
each evaluation consisted of training the network via reinforcement learning, and testing the 
reaching performance to the right and left targets using the different target selection PMd input 
patterns. The trained network had to generate spiking patterns that resulted in the virtual arm 
reaching towards the target indicated by the PMd input. The fitness function was calculated as 
follows: 

davg = ((dleft - dright) / 2) - |dleft – dright| 

fitness = 1 – ((davg – dmin) / (dmax – dmin)) , 

where dleft and dright represent the trajectory error, that is, the time-averaged distance between the 
arm’s endpoint and the left and right targets, respectively; davg represents the average trajectory 
error for both targets, and includes a term that penalizes differences between the two trajectory 
errors to reduce biases towards one of the targets; dmin represents the trajectory error for a best 
case scenario, reaching in straight line from the center to the target, starting after 250 ms and 
assuming a maximum speed of 1.0 ms-1 and an acceleration of 5.0 ms-2; and dmax represents the 
trajectory error for a worst case scenario, reaching to the opposite (wrong) target under the same 
conditions. Ergo, a fitness of 1 indicates a fast, straight line reach towards the correct targets, 
whereas a fitness of 0 indicates a fast straight line each towards the opposite targets. The 
evolutionary algorithm attempted to maximize the fitness of individuals, which resulted in 
minimizing the arm trajectory errors to both targets. 

Each phase of the evolutionary algorithm has several parameters that affect, for example, how 
many individuals are selected for reproduction, the rate of mutation, or how individuals are 
replaced after each generation. We implemented a canonical evolution strategy technique [45] 
with a population of 60 individuals, default selection (i.e., all individuals are selected), ’plus’ 
replacement, an internal adaptive mutation using strategy parameters. The ’plus’ replacement 
method means that only the fittest individuals will survive after each generation. In other words, 
out of 120 individuals (parents and offspring), only the 60 individuals with the highest fitness 
values will remain. Adaptive mutation means that a set of strategy parameters are used to 
determine the mutation rate of each gene or metaparameter i. The mutation rate is calculated as 
follows: 

pi = pi +  N(0, σi) ,  
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where pi represents the ith parameter, N(0, σ) represents the standard normal distribution of mean 
0 and standard deviation σ, and σi is the standard deviation associated with the ith paramter. The 
strategy parameters are evolved along with the individuals using the following update equations: 

σ'i = σi + eτ·N(0,1)+τ'·N(0,1) 

σ'i = max(σ'i, ε) , 

where the minimum allowed strategy parameter ε = 10-5 ; the learning parameters τ = 1/(2·n1/2)1/2 
and τ’ = 1/(2·n)1/2; and n is the number of parameters [45]. 

The parallel implementation of the evolutionary algorithm is illustrated in Figure 2. Obtaining an 
individual with a high fitness (optimized set of metaparameters) requires running the algorithm 
for many generations. However, each individual evaluation can take over 1 hour if run serially 
(since model has to be trained and tested), making it an unfeasible option. Parallel computing 
techniques, such as GPUs, have been previously used to reduce execution time in similar 
problems [27]. Here we employed an HPC cluster, to execute the fitness evaluations in parallel, 
drastically reducing computation time. To implement the evolutionary algorithm we employed 
the open source Python library Inspyred (https://pypi.python.org/pypi/inspyred), and adapted it 
to exploit the parallel computation capabilities of the HPC. A custom Inspyred Evaluator 
function was defined to submit each function evaluation as a job to the HPC queue. Each fitness 
evaluation consisted of running a motor system simulation to train and test reaching to the two 
targets. The network model was parallelized [46] to run on 16 cores, and one additional core was 
used for the virtual musculoskeletal arm. The job scheduling system, Portable Batch System 
(PBS), together with the resource manager, Simple Linux Utility for Resource Management 
(SLURM), were then responsible for distributing the jobs across all computing nodes and 
returning the results to the master node. The Inspyred Evaluator function waited for all jobs to 
finish before submitting the fitness evaluations for the next generation. 

Evolutionary algorithms parallelization typically results in a bottleneck effect, as moving onto 
the next generation requires waiting for the slowest individual to finish its fitness evaluation 
(synchronous master-slave mode). Given that one of the metaparameters evolved is the training 
time, the delay between the fastest and slowest fitness evaluation in populations of 60 individuals 
can be significant. A useful parallel computing technique to solve this problem is the use of 
island models. Under this paradigm, the population is divided into several subpopulations 
(islands) and each one evolves independently. This increases the overall diversity and allows 
efficient parallelization, given that each island can evolve asynchronously, waiting only for the 
slowest individual within its population. To add cooperation between islands, and thus regain the 
benefits a larger population size, migration between islands occurs periodically. Migration 
entails moving a set of randomly selected individuals to a temporary migration pool, and 
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replacing them with different individuals from that pool [47]. 

Two parameters have a strong effect on the performance of island models: the migration interval, 
or number of generations between migrations; and the migration size, or the number of 
individuals migrated each time. Research has shown that island models with a good balance 
between these parameters are not only more computationally efficient, but can improve the 
quality of solutions obtained [26]. This results from achieving higher diversity and exchanging 
enough information to combine the partial results from each island. A study suggests that best 
performance is achieved with moderate migration intervals (5 − 10 generations) and small 
migration sizes (5 − 10% of population size) [49]. Here we chose to divide our single 60-
individual population into 6 islands with 10 individuals each, with a migration interval of 5 
generations and a migration size of 10%. The island model was implemented using Python’s 
multiprocessing library, where each island was run as separate job. Migration between islands 
was implemented via a custom Inspyred Migrator class, which employed a communication 
queue, shared by all jobs/islands, to exchange random individuals periodically. 

The spiking network simulations were run in parallel using NEURON 7.4 [48] and Python 2.7, 
on the San Diego Supercomputer Center (SDSC) Comet HPC system with 2.5 GHz Intel Xeon 
E5-2680v3 processors. The code for the biomimetic neuroprosthetic system, including that used 
for the evolutionary optimization process, is open source and available via ModelDB 
(https://senselab.med.yale.edu/ModelDB/showModel.cshtml?model=194897). 

Results 
Fitness evolution 
The evolutionary optimization algorithm increased the mean and best fitness values of the 
population over generations (Figure 3, black lines). Fitness values during the first generations 
exhibited a large variance, which was rapidly reduced and kept approximately constant for the 
remaining generations. This is a consequence of the evolution strategy implemented, which only 
keeps the fittest individuals, and modifies them gradually in small search steps that result in 
small fitness changes. The best fitness value was 0.619, which was obtained by an individual of 
island 1 after 942 generations. To provide further intuition of the meaning of fitness values, 
consider that for reaching trajectories measured experimentally (see following section for details) 
the fitness value would be 0.6845; and that if the arm remained at the center, the fitness value 
would be 0.508.  

Both mean and best fitness values of the 6 island subpopulations (with 10 individuals each) also 
increased progressively over generations (Figure 3, blue lines). This monotonic increase was 
ensured by the ’plus’ replacement method, which only allows the fittest individuals to survive. 
Islands evolved asynchronously, therefore producing different numbers of generations within the 
same execution time. Although islands evolved independently, random migration occurred every 
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5 generations and increased the diversity of the islands by introducing an external individual. 
Therefore, although the highest fitness values were consistently obtained by island 1, other 
islands could have had an effect via migration.  

Parallelization of the evolutionary optimization process happened at three levels. First, each 
fitness evaluation consisting of a NEURON simulation to train and test the system was 
parallelized to use 16 cores. Second, the 10 fitness evaluations required by each island every new 
generation were also executed in parallel. Finally, the 6 islands were also executed as parallel 
processes. Every level of parallelization provided a speedup compared to the corresponding 
serial or sequential equivalent version (Table II). 

The speedup achieved by parallelizing each simulation on 16 cores was sublinear (11.3x), due to 
some fixed overhead to run and interface with the virtual arm, distribute cells across nodes and 
gather the spikes back. Parallelizing the execution of the 10 individuals per island also resulted in 
a sublinear speedup (5.8x), since advancing to the next generation required evaluating all 
individuals, which implies waiting for the slowest one. Finally, the speedup gained by 
parallelizing islands was linear (6.0x) since islands evolved independently: they can advance to 
the next generation once its 10 individuals have been evaluated, without depending on the stage 
of the remaining islands. In contrast, the single population approach (no islands) required the full 
population of 60 individuals to be evaluated each generation, leading to a strongly sublinear 
speedup: sixty times more cores only achieved a speedup of 20.0x. The island model technique 
increased the speedup by a factor of 1.74. Overall, the island model technique together with 
parallelization of the model and the optimization process yielded a speedup of 393.2x over the 
single-core sequential approach (see Table II). 

Optimized model performance 
The list of metaparameters optimized, the range of values explored for each, and the optimal set 
of values corresponding to the individual with the highest fitness, are shown in Table I. To 
provide a better understanding of the effect of each metaparameter, Table I also includes the 
fitness of the system when the minimum or maximum value of each metaparameter was used 
(keeping the optimized values for the remaining metaparameters). Exploratory movements rate 
and training phase duration were the metaparameters with the highest sensitivity, whereas the 
system exhibited highest robustness to variations of eligibility trace window duration and STDP 
window duration. The optimized value of some metaparameters coincided with its lower bound 
value (RL learning rate, exploratory movements rate and PMd to M1 probability). This could 
indicate that fitness can be improved by increasing the range of values allowed for that 
metaparameter. However, it could also simply be a consequence of the stochastic nature of the 
evolutionary algorithm. Interestingly, fitness values improved slightly when using the minimum 
and maximum values of the eligibility trace window duration. This suggests that performing a 
standard parameter grid search  after the evolutionary algorithm could be an effective method to 
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further optimize the system’s performance.  

The optimized set of metaparameter values enabled the motor system model to learn the 2-target 
reaching task employing a biological reinforcement learning method. Premotor cortex (PMd) 
spiking activity recorded from a macaque monkey during a reaching task, was used as a target 
selection input to the primary motor cortex (M1) model. After training, M1 populations produced 
different patterns of activity in response to the different PMd recorded spiking patterns for each 
target (Figure 4).  

We compared model results to macaque monkey experimental data, including arm trajectories 
and multielectrode array extracellular recordings of 110 neurons from M1 L5. The data 
corresponds to 10 trials of a center-out reaching task to right and left targets placed 4 cm away 
from the center. Arm trajectory errors were normalized by target distance to enable comparison 
between our motor system model and the experimental task. More details on the recording 
procedures and experimental task can be found in [22]. 

The average firing rate during reaching of layer 5 excitatory neurons for the 10 fittest models 
(14.0 Hz ± 4.5 Hz) was similar to that measured experimentally (19.3 Hz ± 1.4 Hz). The 
distribution of firing rates across cells also exhibited similar statistics for the top 10 models 
(median = 20.5 Hz ± 6.0 Hz and interquartile range = 26.2 ± 8.9 Hz) and experiment (median = 
16.0 ± 1.4 Hz and interquartile range = 17.3 ± 1.9 Hz).  

When the model learning metaparameters corresponded to individuals with the highest fitness 
values, the arm trajectory errors were closer to those measured experimentally (Table III). Note 
that fitness takes into account the trajectory error to both targets. Table III also includes the 
model solutions that achieve the lowest trajectory error for a given target, but these show high 
trajectory errors to the alternative target. These results further illustrate the complexity of finding 
networks capable of generating good reaching trajectories to both targets. 

 
Conclusion 
This work lays groundwork for a new generation of neuroprosthetic systems where biological 
brain circuits interact directly with biomimetic cortical models, and employ co-adaptation and 
learning to accomplish a functional task. Such a multiscale approach, ranging from the cellular to 
the behavioral level, will furthermore provide deeper insights into brain dynamics and have 
applications for the diagnosis and restoration of brain disorders. 

We have reproduced experimental data of a center-out reaching task using a biomimetic model 
of the sensorimotor system and a virtual musculoskeletal arm. To achieve this we have combined 
a biological reinforcement learning rule, used to adapt the synaptic weights of a cortical spiking 
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network model during training, with an evolutionary algorithm to automatically tune the 
metaparameters of the system. By evolving a set of indirect parameters or metaparameters, 
instead of the direct network parameters (i.e. the synaptic weights), we were able to employ a 
biologically realistic sensorimotor learning approach, namely, dopamine neuromodulator of 
STDP. Previously, we had performed manual metaparameter tuning of similar models [32, 33]. 
However, the increased complexity of the virtual arm, which included many realistic 
biomechanical properties, and the more challenging dynamics of the detailed cortical model, 
spinal cord, and premotor cortex target selection inputs, required more sophisticated methods. 
We demonstrate the potential of parallel evolutionary algorithms in providing a solution to the 
problem of automated parameter optimization in biomimetic multiscale neural systems. The 
solutions found by our fitting algorithm yielded virtual arm trajectories and firing rates 
comparable to those measured experimentally. 

The parallel implementation of the evolutionary algorithm over a large HPC cluster was 
achieved by combining the flexibility of a Python-based optimization package (Inspyred), with 
the HPC job scheduling software. Multiple fitness functions (up to 60) were evaluated 
concurrently, where each function consisted of running a NEURON simulations, which in turn 
executed, and interacted with, an instance of the musculoskeletal arm model, developed in C++. 
This demonstrates the modularity and adaptability of the parallel optimization framework, and 
suggests it could be useful for a diverse range of models, including those developed in different 
languages. Furthermore, our evolutionary algorithm implementation made use of an island model 
technique, whereby the population is subdivided into smaller groups that evolve independently 
and periodically exchange information via migration. This method significantly reduced the 
execution time and increased the HPC CPU usage, by eliminating the bottleneck caused by the 
slowest individuals in large populations. 

Parallel evolutionary algorithms constitute an effective tool for automated parameter 
optimization in complex multiscale systems, such as those linking neural and behavioral models. 
This kind of tools are likely to become indispensable in the development of hybrid co-adapting 
systems where in silico biomimetic brain models interact with real brains and prosthetic devices 
[13]. We previously showed that spikes from multielectrode recordings in macaque monkeys can 
be fed in real-time into a biomimetic model [34]. In this work, we extend this to show how 
spiking data recorded from macaque premotor cortex can be used to modulate a primary motor 
cortex (M1) model to select a desired target for reaching. This approach may enable the 
development of more advanced control of robotic limbs [10, 50], and have clinical applications 
by employing electrical or optogenetic stimulation neural control methods [12, 14, 51] to restore 
normal function in damaged brains [52, 53]. 
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Figure 1 Overview of neuroprosthetic motor system model. Recordings from premotor cortex 
modulated primary motor cortex (M1) to select the target to reach; M1 excited the descending 
spinal cord neurons that drove the arm muscles, and received arm proprioceptive feedback via 
the ascending spinal cord neurons. The virtual arm trajectory can be reproduced by a robotic arm 
in real time. To close the loop, neurostimulation could be fed back into the brain based on the 
motor cortex model activity. 

 

Figure 2 Parallel implementation of the island model evolutionary algorithm. A set of 6 islands 
is instantiated via multiprocessing parallel jobs, each with a population of 10 individuals which 
evolve independently. Information between islands is exchanged via migration of individuals 
implemented using a shared queue. Individuals are selected and mutated using internal adaptive 
strategy parameters to create new offspring. New individuals are evaluated to obtain their fitness 



24 

 
 
 
 
 
 
 
 

values. Evaluation of fitness functions occurs in parallel in the HPC using PBS/SLURM, with 
each evaluation consisting of training the motor system model via reinforcement learning (RL), 
and testing its reaching performance to each of the targets. In every generation, the population is 
replaced by the fittest individuals out of all the parents and offspring. 

 

 

Figure 3 Evolution of average (shaded areas) and best (lines) fitness values over 1000 
generations, for each island (blue) and the entire population (black). The width of shaded areas 
corresponds to the standard deviation of the fitness of individuals in each island. Each individual 
consists of a different set of metaparameters which are evaluated using a fitness function that 
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reflects the degree of accuracy of the resulting arm trajectory. 

 

Figure 4 Time-resolved average firing rates of the premotor and motor cortical populations 
during reaching to two targets. Premotor spiking activity was recorded from a macaque monkey, 
and is used as a target selection input to the primary motor cortex (M1) model. M1 population 
firing patterns are modulated by the PMd input and result in different reaching movement (see 
Table III). The initial 200 ms of transient activity did not directly affect arm movements and are 
omitted. 

 
 
 
 
 
 
 
 
 
 
Table 1 List of metaparameters optimized using parallel evolutionary algorithm, including range 
and optimized value to obtain fitness of 0.619. 
Description Min  Max  Optimized value 

Left target Right target 
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(fitness using min) (fitness using max) 
STDP window duration (ms) 10  (0.557) 50 (0.5813) 48.5 

Eligibility trace window duration (ms) 50 (0.636) 150 (0.631) 117.8 

Training phase duration (s) 30 (0.565) 180 (0.192) 85 

RL learning rate 0.01 (0.619) 0.1 (0.444) 0.01 

RL interval (ms) 50 (0.466) 100 (0.560) 76.8 

Background rate (Hz) 50 (0.516) 150 (0.355) 134.5 

Exploratory movements rate (Hz) 5 (0.619) 250 (0.426) 5 

Motor command threshold (spikes) 500 (0.566) 2000 (0.531) 528.8 

PMd to M1 probability of connection factor 1 (0.619)  8 (0.515) 1.0 

Initial PMd to M1 weights 0.5 (0.508) 4 (0.433) 2.4 

 
 
 
 
Table 2 Speedup achieved by parallelization of the model and evolutionary optimization process 
for a population of 60 individuals (6 islands). 
Description Cores required 

(network + arm) 
Time/generation 

(minutes) 
Speedup 

Purely sequential 1 + 1 2,945.2 1 

Parallel simulation  
(sequential individuals+islands) 

16 + 1 260.6 11.3 

Parallel simulation + individuals 
(sequential islands) 

160 + 10 44.9 11.3 × 5.8 =  
65.6 

Parallel simulation + individuals + islands 960 + 60 7.5 11.3 × 5.8 × 6.0 = 
393.2  

Parallel simulation + individuals      
(single population, no islands) 

960 + 60 13.0 11.3 × 20.0 =  
226.6  

 
 
Table 3 Comparison of normalized arm trajectory error for experimental data vs. the best and 
worst model solutions (average and standard deviation). 
Target Experiment  

(10 trials) 
Best 10 
models 
(both 

targets) 

Best 10 
models 

(left target) 

Best 10 
models 
(right 
target) 

Worst 10 
models 
(both 

targets) 

Worst 10 
models 

(left target) 

Worst 10 
models 
(right 
target) 
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Right 0.63 ± 0.09 0.85 ± 0.02 1.14 ± 0.09 0.66 ± 0.01 1.08 ± 0.02 0.72 ± 0.04 1.26 ± 0.03 

Left 0.73 ± 0.10 0.85 ± 0.02 0.69 ± 0.02 1.21 ± 0.08 1.08 ± 0.02 1.59 ± 0.03 0.80 ± 0.10 

 


