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Abstract— Full multi-compartment multi-channel neu-
ron models are state of the art for single neuron modeling
but are CPU intensive. This makes them unsuitable for
network modeling, where simulation of 10,000 or more
neurons is desirable. For this reason, most network mod-
els utilize highly simplified models such as single state-
variable integrate-and-fire units. This compromise has the
disadvantage of eliminating most biological detail, much
of which can be expected to lead to interesting and
important network behavior. To reconcile these opposing
computational and biological demands, we developed a
rule-based firing (RBF) model incorporating a number
of synaptic and cellular responses which are activated as
needed. The rules produce effects that include adaptation,
bursting, depolarization blockade, Mg-sensitive NMDA
conductance, and post-inhibitory rebound. By utilizing
pre-calculated waveforms and avoiding linked differential
equations, network simulations are entirely event-driven,
with no integration overhead. The model has been further
optimized by use of table look-ups in lieu of run-time
calculation.
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I. I NTRODUCTION

Classical artificial neural network (ANN) models uti-
lize simple sum-and-squash analog units which add their
inputs linearly and then pass them through a nonlinear
function to produce a bounded output. Networks of these
units can produce many interesting behaviors. However,
the utilization of ANNs as direct models of the nervous
system is limited by their use of a single continuous
state variable. This state-variable is assumed to be a
stand-in for the rate of firing of nerve cells. Although
rate coding is likely to be important in the brain, these
simple ANN models do not readily capture other coding
schemes, such as those involving synchronization and
oscillation, that are also like to be essential.1

Integrate-and-fire neurons provide the critical missing
detail: spike generation. They can therefore be utilized to
design networks which show these additional properties
that require clear signal timing. A number of interesting
results regarding oscillation and phase locking have been
obtained with such model neurons.2],[3

The ultimate level of network modeling realism is to
utilize full compartment models with multiple voltage-
sensitive ion channels in all compartments. However,

such models are extremely expensive computationally.
Additionally, these models produce complex, difficult-
to-understand dynamical behaviors that makes them very
hard to tune to produce particular input/output responses.
Altering the many internal parameters of these models
will typically change several of the neuron response
patterns that one wishes to individually explore in a
network setting.

For these reasons, we have developed a rule-based
firing model that reproduces some of the complexity of
real neurons with little computational overhead and with
ready access to parameters that are likely to be critical
for network dynamics. The basic rule remains the same
as that of the integrate-and-fire model: fire when the state
variable exceeds a fixed threshold. Additional rules are
then added as needed to capture a variety of biological
details.

II. M ETHODS

We have developed the RBF model to be entirely event
driven: state variables are only updated when an event is
received. These events can be 1. external synaptic events
from another neuron or a stimulator; 2. internal events
indicating that the unit must now update some state. A
simple example of the latter is a refractory period. The
unit is refractory (ignores input) during a fixed period
of time following spike generation. At the end of this
period, it needs to update its internal state in order to
indicate that it is no longer refractory.

Most external inputs produce a step increment in
one of the internal state variables. These state variables
then decay exponentially back towards resting state. By
using table look-up, we avoid run-time calculation of
these exponentials as well as other response waveforms.
Additionally, random variables are precalculated and
stored in arrays so as to avoid calls to computationally
expensive pseudo-randomization routines.

The techniques and simulations described here
are implemented in the NEURON simulator
(www.neuron.yale.edu).4],[5],[6 Although NEURON is a
compartment model simulator, it features an efficient
event queue utilizing a splay-tree algorithm.4],[7],[8

The NEURON integrator can be turned off during



event-driven simulations so as to offer no time- and
minimal space-overhead. Individual neuron integrator
can also be turned on to run hybrid networks with both
compartmental and rule-based cells.9

III. R ESULTS

As noted above, the primary rule is that of the
integrate-and-fire neuron: the neuron fires when the
activation state crosses a fixed threshold. However, in
the RBF model, the activation state is not itself an
independent variable but is instead taken as a total
membrane voltageVm that is the sum of four state-
variables that represent various types of input as well as
an additional state which responds to spiking. The four
external state variables correspond to the major types of
synaptic inputs: the excitatory AMPA and NMDA inputs;
and the inhibitory GABAA and GABAB inputs. (AMPA,
NMDA as used here do not refer to the actual chemicals
but to the excitatory synaptic connections associated with
their associated receptors.) The internal state variable
corresponds to a summed afterhyperpolarizing potassium
current (AHP) which is triggered following spike gen-
eration. The spike itself does not need to be internally
represented at all but is simply an event that can be added
to the event queue for delivery to postsynaptic cells to
which the current cell is connected.

The response to an individual input is a voltage
jump after an axonal delay. WeightWAMPA determines
the size of the voltage step whose amplitude is also
proportional to the distance from theEAMPA reversal
potential:V step

AMPA = WAMPA · V−EAMP A

EAMP A
(EAMPA in

the denominator is a normalization). Note thatWAMPA

is a unitless weight, not a conductance.WAMPA con-
verts a driving force to a step voltage increment due to
the AMPA activation. This step is added to a calculated
ongoingVAMPA which represents the summed AMPA
EPSP and is maintained as a separate state variable.
Following a step,VAMPA decays with time constant
τAMPA. For convenience, parameters are expressed in
biological units, so that for example resting membrane
potential andEAMPA can be different in different cells.

As noted above, the model maintains separateVsyn

synaptic state variables forVNMDA, VGABAA and
VGABAB with suitable time constants and reversal poten-
tials and an intrinsic AHP “current,” augmented when-
ever a spike occurs. The AHP is a negative current that
not only adds into the globalVm but is also used to
directly augment the refractory period. An additional
adaptation mechanism is provided by decrementing the
synaptically drivenVsyn state variables after each spike.
Because the units are rule-based, their firing tends to be

highly regular which in a network setting could produce
unwanted coincidences. As a symmetry-breaking proce-
dure, jitter can be added as a small additional random
delay in spike firing time.

At least two kinds of burst spiking are commonly
seen in neurons: driven bursts riding on top of powerful
synaptic stimulation and an intrinsic bursts produced by
the intrinsic mechanisms of the neuron itself. Both of
these burst types can be produced by the RBF model
with the latter emerging from a rule that determines
burst length and frequency. Here again, the bursts can
be varied by adding jitter or by varying the length or
frequency.

Depolarization blockade of spiking occurs in a
Hodgkin-Huxley model neuron, as in reality, where the
voltage rises beyond the domain where sodium chan-
nel activation and deactivation occur, preventing the
characteristic action potential oscillation. In the RBF
model, depolarization blockade occurs when a fixed
upper threshold is reached. RBF rules also emulate
the influence of NMDA activation, with its tendency
to produce longer and stronger depolarizing effects in
the presence of postsynaptic depolarization. In the RBF
model, this influence is instantiated using the standard
Mg++ unblocking equation:1/(1 + exp(0.062 · −VM ) ·
Mg/3.57).10 Note that the use of realistic units (mV)
for voltage rules allows us to use the standard Mg++

dependence equation. We have not yet implemented
learning rules associated with NMDA activation.

NMDA shows cooperativity based on postsynaptic
voltage: increased activation leads to greater depolariza-
tion leads to further activation. Hippocampus shows an
intriguing image of this postsynaptic cooperative effect:
GABAB, a prolonged, inhibitory input, demonstrates a
cooperativity based on the strength of the presynaptic
burst.11],[12 Thus a large presynaptic burst can produce
a very substantial inhibition. However, the effect of
inhibition is often dual, since it effects an immediate
cessation of activity but also encourages a subsequent
facilitation of firing through an anode-break mechanism.
This rebound effect is particularly prominent in thalam-
ocortical cells but can be seen to a lesser extent in many
cell types.13

In the RBF model, increasing presynaptic burst size
produces larger IPSP and greater rebound firing. This
complex phenomenon is regulated though a set of rules:
1. a delay between presynaptic burst firing and inhibitory
postsynaptic potential (IPSP) initiation (based on the
delays required for second messenger transmission); 2.
burst size cooperativity14 3. post-IPSP rebound as a
percentage of the IPSP size.



Fig. 1: Activity in a network of 1000 excitatory and
40 inhibitory cells. Representative inhibitory (top)
and excitatory (bottom) cell voltage traces (scale:10
mV;100 ms)

We have begun to utilize there simulacra in net-
work models (Fig. 1). Since these simulations have
no integrator overhead, they can run arbitrarily fast,
depending on the amount of spiking in the model.
As spike frequencies increase, queue overhead imposes
increasing computational burden. This dependency on
activity patterns makes it difficult to benchmark the
simulation against other model types, requiring that the
average firing of two implementations be matched on
a per-cell-type basis (compartment models of some cell
types will be far more computationally intensive than
those for others). In general, we can expect substantial
speed ups over integrated simulations unless event fre-
quencies approach the inverse of the time-step required
for numerical integration of compartment models. A
typical time-step for a fixed time-step integration would
be 0.025 ms corresponding to a 40 kHz integration
frequency. Such an event frequency would occur in a
network with a convergence of 1000 cells each actively
spiking at 40 Hz. Although pyramidal cells have order
10000 synaptic boutons, the convergence is considerably
less due to redundant connectivity. Additionally, under
most conditions the several thousand presynaptic cells
would not be expected to all be simultaneously strongly
activated.

IV. D ISCUSSION

In addition to advantages of speed, the RBF model
lays out neural parameters explicitly so as to permit easy
manipulation. By contrast, in a compartment model, phe-
nomena such as adaptation and post-inhibitory rebound
are dependent on several voltage-sensitive ion channels,
each of which has its own complex parameterization,15

two-steps removed from the phenomenon of interest.
Alteration of one of these channel-level parameters
will typically have multiple effects, altering not only
the neuron-level phenomenon of interest but often pro-
foundly altering other neuron responses as well. For

example, altering adaptation by changing the strength of
one or more of the many potassium channels responsible
for adaptation will likely change burst patterns as well.

The RBF model provides a framework that can in-
corporate other rules as needed in particular systems
where they are thought to be important. For example,
some neurons have prolonged bursts with characteristic
firing patterns.16 These patterns can be incorporated into
the rule based either by constructing an analytically
calculable dynamical rule or by providing a simple
cut-and-paste spike-form. In the latter case, jitter and
length variation rules would then be added to prevent
stereotypy.

An interesting, and difficult, additional rule-set would
incorporate input/output relations from dendritic inputs.
There is considerable debate as to whether dendrites
simply provide reach, with all inputs being handled
equally, or provide substantial signal processing. In the
latter case, it is possible that the dendrites make the
cell into the equivalent of an entire neural network
of simplified units.17 In this case, it might be possible
to represent dendritic fields as individual RBF units
with specialized rule base. Alternatively, the dendritic
transform might be a complex mapping that could be
simulated by using a multi-dimensional table look-up.

In some cases, additional rules can be incorporated by
providing waveforms copied from electrophysiological
records. More flexible rules can be arrived at by emu-
lating the behavior of the more complex compartmental
models. In this case, RBF units can be run together with
compartmental simulations in NEURON with use of a
fitting algorithm controlling RBF unit parameters.

These hybrid networks, incorporating RBF units with
compartment models at varying levels of complexity will
also be valuable for confirming the adequacy of RBF
activity patterns by comparing them to compartment
model activity within the network context. Compartment
models have the advantage of allowing testing of specific
ion channel alterations such as occur with the application
of drugs and other neuromodulators. Observed neuron-
level changes can then be used to develop additional
rules to assess pharmacotherapeutic effects.
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