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Tonic-Clonic Transitions in Computer Simulation

William W. Lytton,* and Ahmet Omurtagi

Summary: Network simulations can help identify underlying mech-
anisms of epileptic activity that are hard to isolate in biologic
preparations. To be useful, simulations must be sufficiently realistic
to make possible biologic and clinical prediction. This requirement
for large networks of sufficiently detailed neurons raises challenges
both with regard to computational load and the difficulty of obtain-
ing insights with large numbers of free parameters and the large
amounts of generated data. The authors have addressed these prob-
lems by simulating computationally manageable networks of mod-
erate size consisting of 1,000 to 3,000 neurons with multiple intrin-
sic and synaptic properties. Experiments on these simulations
demonstrated the presence of epileptiform behavior in the form of
repetitive high-intensity population events (clonic behavior) or
latch-up with near maximal activity (tonic behavior). Intrinsic neu-
ronal excitability is not always a predictor of network epileptiform
activity but may paradoxically produce antiepileptic effects, depend-
ing on the settings of other parameters. Several simulations revealed
the importance of random coincident inputs to shift a network from
a low-activation to a high-activation epileptiform state. Finally, a
simulated anticonvulsant acting on excitability tended to preferen-
tially decrease tonic activity.

(J Clin Neurophysiol 2007;24: 175-181)

Computer simulation of neural systems can be used to
connect micro to macro, explaining behavior at a net-
work or whole neuron level by reference to the underlying
proteins that control the dynamics of neurons (voltage- and
ligand-sensitive channels) and synapses (receptors) (Lytton,
2002). In the context of epilepsy, these conceptual connec-
tions can be used both to explain how a particular pathologic
process can produce or provoke seizures (Bush et al., 1999)
and to further develop rational pharmacotherapeutic ap-
proaches to polypharmacy and syndrome-targeted therapeu-
tics (Drongelen et al., 2005).

A continuing difficulty in neuronal network simulation
is the size of the problem, which leads to difficulty both in
execution (need for supercomputers; Hereld et al., 2005;
Migliore et al., 2006) and difficulty in organizing and inter-
preting the many thousands of associated parameters (Lytton,
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2006; Omurtag et al., 2000). In this article, we use a highly
simplified neuron representation that nonetheless preserves
the critical dynamics of both neurons and synapses (Lytton
and Stewart, 2005, 2006). We use this model to explore large
numbers of simulations to evaluate how particular alterations
at the cellular or synaptic level lead to epileptiform behavior
at the network level. We also use simulated pharmacology to
determine possible effects of anticonvulsants on these dy-
namical patterns.

METHODS

Simulations were done in NEURON using the Artificial
Cell mechanism (Lytton and Stewart, 2005,2006). Two dif-
ferent sized networks were used. Each network had three cell
types: 1) an excitatory population that was made spontane-
ously active to play the role of a driver of activity (“drivers”);
2) a larger excitatory population that then expresses epilep-
tiform activity (“expressors”); and 3) an inhibitory popula-
tion. Network A (NetA) had 10 drivers, 1,000 expressors, and
40 inhibitory cells. Network B (NetB) had 1,000 drivers,
2,000 expressors, and 500 inhibitory cells. In addition to size,
a major difference between the two networks was that Net-
work B used feedback to the drivers, which could then have
their activity altered by ongoing excitatory and inhibitory
activity.

Connectivity was random with the following connec-
tion densities listed in Table 1:

Several parameters were explored in these networks.
Synaptic parameters were the connectivity weights and time
constants for the different connection types (a-amino-3-hy-
droxy-5-methyl-ioxyzole-4-propionic acid receptor, AMPA;
N-methyl-d-aspartate receptor, NMDA; y-aminobutyric acid
type-A receptor, GABA ,; y-aminobutyric acid type-B recep-
tor, GABAgR). Intrinsic parameters included threshold, intrin-
sic time constant, refractory period and an afterhyperpolariz-
ing potential (AHP). Synaptic weights were assigned
randomly with a normal distribution around the parameter
central point within a narrow range of from 5-10% of value.
No connection delay was included in these simulations.

A total of 138,240 parameter-exploration simulations
were performed using NetA. Due to the large number of
simulations, only simulated field potential could be saved for
most of these.

Simulations were performed in Linux on various plat-
forms. Multiple simulation runs were performed on an 84-
node IBM-1300 Beowulf cluster. Full model definition and a
runnable simulation is available for Fig. 4 on ModelDB
(http://senselab.med.yale.edu/senselab/ModelDB).
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TABLE 1. Connection Densities

NetA: FROM \2\ Driver Expressor Inhibitory Cell
TO | driver — — —
Expressor 0.2 0.1 0.4
Inhibitory cell 0.5 0.4 1.0
NetB: FROM \2\ Driver Expressor Inhibitory Cell
TO | driver 0.1 0.05 0.22
Expressor 0.1 0.05 0.22
Inhibitory cell 0.1 0.1 0.22

RESULTS

Weight matrices were tuned to produce substantial
activation in expressors characterized by high-amplitude re-
petitive population spiking (Fig. 1). Intrinsic and synaptic
parameters were subsequently varied. In Fig. 1 the drivers
(bottom row) have an average firing rate of 2 Hz. Despite the
random nature of the inputs, structure is created in the firing
of the expressor cells due to the tendency of random coinci-
dent input to produce brief activation chains that involve a
large and changing proportion of the expressors. In the
current example, the initial population burst involves 60% of
the expressor cells while the subsequent population events
involve between 20—40% of the population.

Activity Altered by Timing

Despite identical circuitry and parameters, expressor
activity patterns could be significantly different due to alter-
ations in the timing of driver activation with no alteration in
the total amount of drive. In Fig. 2, the same total number of
inputs were applied to identical networks. Time of initial
activation of the expressors varied by 200 milliseconds. This
can be explained by noting that the proper coincidence of
activations are necessary for activating the network to pro-

FIGURE 1. Raster plot showing spikes dur- D
ing one second of epileptiform activity in a

sample network. Drivers, expressors, and in-

hibitors are indicated by initial letter. Field po-

tential for expressors is superimposed on the
corresponding raster (NetB connectivity).
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duce ongoing activity. Once the network did begin firing
persistently, variability was also seen in the specific pattern of
firing. All networks started out with a pattern of population
bursting with sets of four or five population spikes. In two
cases (top and seventh network in Fig. 2), this pattern per-
sisted throughout the entire 500 milliseconds of simulation.
In the other networks, this pattern gave way within 100 to 200
milliseconds to a pattern of faster firing.

Increased Intrinsic Excitability May Have
Myriad Effects on Network Behavior

We ran 138,240 parameter variations on NetA with
explorations of multiple values of both intrinsic and synaptic
parameters. Increasing intrinsic cell excitability by lowering
spike threshold (hyperexcitable network) produced a greater
number of population spikes and a greater duration of repet-
itive population spikes activity compared with the low-excit-
ability network (otherwise matched for all parameters and
stimulation pattern) in 46% of the assayed simulations (Fig.
3. right-upper quadrant). This meant that a surprising 54% did
not show both of these indicators of epileptiform activity. In
some cases, this paradox could be readily explained. For
example, Fig. 3E demonstrates a single “interictal” spike in
the hyperexcitable network (solid line) while showing repet-
itive spike-wave activity in a low-excitability network that
otherwise has the same parameters and stimulation (dashed
line). By contrast, Fig. 3G produced a longer but less intense
(fewer population spikes) seizure in the hyperexcitable net-
work. Of course, these simple measures are only a gross
indication of epileptiform activity. In Figs. 3A and 3B, the
hyperexcitable network produces a greater number of popu-
lation spikes but the low-excitability network shows higher-
amplitude population spikes with a clear spike-wave mor-
phology. About 10% of simulation pairs showed very little
change in these measures despite the change in cell excitabil-
ity (Fig. 3D).

200 ms
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Seizure Simulation
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FIGURE 2. Raster plots of expressor cells
from 10 runs of NetA with shuffling of
driver timing and input targets (A). A 500-
millisecond simulation shows different re-
sponse times and different firing patterns
due to reshuffling of input times. Arrow
shows time of driver activity onset. (B) Ex-
pansion of 50 milliseconds of activity from

Due to its larger size, comparable large-scale parameter
search of NetB was not feasible. Instead, the effects of
individual parameter alterations were explored to assess al-
terations that either promoted or prevented epileptiform ac-
tivity. In general, two patterns of activity were seen: recurrent
population spikes and prolonged continuous spiking. Recur-
rent population spiking tended to be less rhythmic than that
seen in NetA simulations (Fig. 1).

Simple Networks Prone to Latch-up

In the absence of inhibition, increased excitatory con-
nectivity via AMPA connections could readily produce a
temporary latch-up condition with all cells showing tonic
spiking at or near the maximum rate allowed by the refractory
period (Fig. 4). In the absence of inhibition, intrinsic slow
hyperpolarizing mechanisms terminate the latch-up condi-
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each run (period of bar below A).

tion. Here the timing of this effect is controlled by the AHP
state-variable time-constant. In a compartment simulation or
real cell, the timing would represent the combined effects of
long-time-constant Ca”*- and voltage-sensitive potassium
channels.

Figure 4 shows how a slow-building hyperpolarizing
influence will terminate the latch-up condition. By contrast,
Fig. 5 illustrates that a slow-building depolarizing influence,
that mediated by NMDA, can lead to latch-up. However,
whereas the timing of termination of Fig. 4 was predictable
directly from the time-course and strength of the afterhyper-
polarizing parameters (AHP), the timing of latch-up in Fig. 5
depended not only on NMDA parameters but also on the
random near-simultaneous occurrence of inputs (c¢f- Fig. 2).
Although intrinsic cellular state-variables are relatively im-

FIGURE 3. Scatter plots of differences in
seizure duration (x-axis) and number of
population spikes (y-axis) between hyperex-
citable and low-excitability versions of NetA.
Shown are points for 27,968 out of 138,240
simulations. Simulated field potentials for
individual 1-second simulation pairs are
shown in A-G with arrow indicating loca-
tion on the scatter plot. Solid-line, hyperex-
citable network; dashed-line, low-excitability
network.
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FIGURE 4. Activity in NetB simulation with
no inhibition. Field potential for expressors

is superimposed on the raster plot. Voltage

traces for two expressors are shown at bot-

tom.

mune to random network fluctuations, synaptic state-vari-
ables are driven by them and are therefore highly sensitive to
random input.

Inhibition in Fig. 5 is dominated by feedforward inhi-
bition from drivers to inhibitors to expressors. Increasing the
amount of feedforward inhibition by increasing at either or
both intervening synaptic locations reduced activity of the
expressors without altering the pattern of firing (not shown).
Population firing pattern continued to be dominated by ran-
dom coincidence patterns of the drivers. By contrast, increas-
ing feedback inhibition did have a significant effect on
population firing because feedback carved out periods of
inactivation following activation of the expressors (Fig. 6).

FIGURE 5. Latch-up occurring late in a
simulation with augmentation of expressor —
expressor NMDA strength.
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Interestingly, periods of latch-up could still be seen and were
still terminated primarily by the intrinsic AHP.

Burst-Modulating Anticonvulsant Drug Effects

Several of the large variety of current and past anticon-
vulsants have been found to affect voltage-dependent sodium
channels so as to reduce bursting in excitatory cells. This
includes older anticonvulsants such as phenytoin and carbam-
azepine as well as newer agents such as lamotrigine. We
modeled our anticonvulsant drug (ACD) simulation effect on
that of lamotrigine shown in Fig. 6 of Xie et al. (Fig. 7) (Xie
et al., 1995).

200 ms
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Application of the ACD effect to the network shown in
Fig. 6 reduced the duration of each activation, most notably
during the tonic latch-up period (Fig. 8). Despite the elimi-
nation of the prolonged latch-up period, the subsequent dy-
namics appear unchanged (arrow). Cell firing in the ACD
simulation occurred at the time of latch-up onset in the
control (Fig. 9). Surprisingly, cell firing also occurred near
the time of latch-up termination in the control (arrows in Fig.
9; also compare the two field potentials in Fig. 8). This
suggests that the random coincident driver firing that initiates
such firing played a role in terminating the latch-up firing in
the control simulation.

DISCUSSION

Coherent or coordinated firing is a generic property of
model networks. Neurons can induce firing in much of the
rest of the population as a result of mutual positive synaptic
influences and this activation can then be further coordinated
in repetitive activity by the modulating effects of inhibition

W

-

50 mV
250 ms

FIGURE 7. Reduction of bursting in ACD simulation with
repeated plateau inputs of increasing duration. Top, control;
bottom, ACD effect.

Copyright © 2007 by the American Clinical Neurophysiology Society

200 ms

FIGURE 6. Feedback inhibition from ex-
pressors — inhibitors — expressors more
cleanly carves out episodes of activation.

(Lytton and Sejnowski, 1991). These dynamical periods con-
trast with periods of incoherent firing where minimal corre-
lations exist among the spike times of individual neurons. For
relatively simple models, analysis shows that parameter space
contains regions that correspond to various forms of coher-
ence, which are separated from regions of incoherence by
distinct but complicated boundaries (Sirovich et al., 2006).
Due to small changes in intrinsic or synaptic properties, or in
the levels of noise, a simple network can switch rapidly
among different patterns of firing. Here we have explored
more complex networks to determine which biologic param-
eters are particularly important for these transitions.

In this study, we used the simulation level of artificial
cells to permit the running of moderately large networks
(thousands of cells) in real time. Although this approach does
not include the level of detail permitted by multicompartment
modeling, it makes it easier to relate specific parameter
changes to network behavior by avoiding the complex pa-
rameterizations associated with the single neuron simulation.

The network was designed to be simple and to illustrate
an organizational principle that applies to both slice and in
vivo epileptogenesis: there is typically a subset of cells or a
single brain area that provides the activation that then in-
volves a larger number of cells either locally or in different
parts of the brain (secondary generalization of a seizure)
(Dominguez et al., 2005; Dudek et al., 1999; Meeren et al.,
2002; Van Drongelen et al., 2003). Our distinction between
drivers and expressors encapsulates this organization princi-
ple without specifying whether we are considering local or
remote activation.

We regard the dynamics of these simulations as epilep-
tiform due to the relatively large number of expressor cells
that spike during population events. The proportion, some-
times upwards of 50%, is likely higher than would be ex-
pected in a slice or in vivo due to the relatively small size of
the simulated network. By contrast, an interictal spike would

179



Lytton and Omurtag

Journal of Clinical Neurophysiology ¢ Volume 24, Number 2, April 2007

FIGURE 8. Anticonvulsant drug simulation
reduces prolonged latch-up period without
significantly affecting other dynamics. Field
recordings compare control (upper trace
from Fig. 6) and ACD simulation (lower
trace).

involve a somewhat higher proportion of the network and
would exhaust the “consumable” neurons so that activity in
the network would cease for some time (Lytton et al., 1998).
Although the time course is compressed, we consider
the latch-up phenomenon (Fig. 6) to be suggestive of a tonic
epileptic state where near-maximal continuing firing of a
large number of neurons would result in constant posturing of
corresponding muscle groups. Similarly, we associate repet-
itive brief activation with clonic activity that would produce
rhythmic contractions in associated muscle groups. These
activations would also be associated with paroxysmal depo-
larizing shifts in network cells, as can be seen in Fig. 9.

A

FIGURE 9. Individual neurons in ACD sim-

ulation (A) tend to fire at times correspond- E
ing to beginning and end (arrows) of tonic

latch-up periods from control (B), which is
important for these transitions.

180

200 ms

Our large simulation set (Fig. 3) demonstrated that the
many parameters that interact in the dynamics of a neuron
network can produce unexpected consequences. In general
we expected that increasing the excitability of individual
neurons would increase the excitability of the network as a
whole, leading to more population spikes. This did occur in a
large proportion of cases (upper right quadrant of Fig. 3).
However, we also found cases where the increase had almost
no effect on network dynamics (Fig. 3D) and other cases
where the increase reduced population spiking behavior (Fig.
3F). Some of these latter cases belong to the case alluded to
above: overexcitability of neurons will lead to an interictal

200 ms
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spike that exhausts firing potential and precludes repetitive
population firing (Fig. 3E). The measures that we used
(population spike number and period of population spiking)
did not always accurately classify the “epileptiform” appear-
ance of a discharge. Some discharges, for example the dashed
line in Fig. 3A, would be considered epileptiform based on
well-formed spike-and-wave discharges. However, use of
other measures also misclassified some patterns and also
resulted in scatter across the measurement plane: e.g., the
spike-and-wave discharge of Fig. 3A belongs to a low-
excitability network.

Several of our simulations suggest the importance of an
activity trigger where random activity in the drivers activates
enough of the expressors to alter dynamics and initiate clonic
or tonic (latch-up) activity. Figure 2 demonstrates that such a
trigger may not only produce temporary activation (an inter-
ictal spike) but can also move the entire network into a new
state producing a prolonged seizure. In Fig. 2, the dynamics
appeared to have three states, with the network showing
resting behavior (no firing) as well as two patterns of repet-
itive activity with different characteristic cell firing frequen-
cies. In the networks presented here the triggers were
random, but in epilepsy these could in many cases be
patterned inputs, whether identifiable (i.e., stimulus-trig-
gered seizures) or occult.

Intrinsic state-variables such as AHP show more reli-
able effects than do synaptic parameters such as NMDA (here
modeled outside the context of long-term potentiation). This
is due to the aforementioned randomness of inputs which in
these networks pertained not only to the drivers but also to the
activation of the expressors by one another due to the random
wiring of the network. AHP, acting as an intrinsic inhibitory
state-variables, effectively integrates the firing of an individ-
ual cell and is not terribly sensitive to precise patterns of
activity. Due to its relatively long time-constant and voltage-
sensitivity, NMDA provided a set of extrinsic excitatory
state-variables that tended to integrate postsynaptic activation
(Traub et al., 1994). However, NMDA activation, in tandem
with AMPA activation, was sensitive to the precise pattern of
presynaptic activity.

Feedback inhibition was more effective in shaping the
activity of the network while feedforward inhibition had more
of an effect on overall firing level. This appeared to be the
case regardless of the time constants of the inhibitory process.
Feedback inhibition sculpted activity out of the expressors by
limiting firing durations and thereby produced clumps of
activity that appeared as patterns in the field potential. Feed-
forward inhibition produced a more tonic level of firing

Copyright © 2007 by the American Clinical Neurophysiology Society

reduction due to its being driven by the relatively constant
random-firing drivers.

Our ACD simulation suggested that anticonvulsants of
this class (modulators of sodium channels) might be expected
to have a greater effect on extremely fast tonic or latch-up
activity than on the briefer activity associated with repetitive
clonic activity. However, many ACDs produce effects at
multiple receptors and will produce more complex dynamical
alterations. We plan to explore such multireceptor effects in
the future.
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