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Fig. 4. Distinct parameter values for top and bottom one percentile in detailed models archive. A: normalized parameter values for top (purple-up triangles) and
bottom (blue-down triangles) based on overall fitness across all measures. B: Pearson correlations between parameter vectors in A show weak intraclass similarity
(best-best: 0.18; worst-worst: 0.11; best-worst: —0.05). C: normalized parameter values for top (purple-up triangles) and bottom (blue-down triangles) based on
F-I fitness. D: Pearson correlations between parameter vectors in C show strong intraclass similarity with strong interclass dissimilarity (best-best: 0.56;
worst-worst: 0.86; best-worst: —0.62). (Parameter normalization by subtraction of mean and division by SD.)

Both the simple and detailed models accurately followed
the subthreshold voltage trajectories seen in the in vitro
experiments, replicating the noticeable I,-dependent sag
(Fig. 5). Before the current injection the models had stable
somatic resting membrane potentials near —80 mV. Current
injection produced a sharp transition in membrane potential
followed by a sag due to I, (HCN channel). I, opposed
hyperpolarization by opening and creating an inward current
and opposed depolarization by closing and thereby reducing
net inward current. After the current injection was turned off
membrane potential showed overshoot, again due to /. The
detailed model (red) had better overall fits to the subthresh-
old data, compared to the simplified model (blue). Sub-
threshold fit in this F—I-optimized model was not as good
with depolarization due to the effects of high K, currents,
which were increased in the F-I optimization (Fig. 4C,
columns 2-5).

Exemplar model neurons displayed similar firing patterns to
those observed in vitro (Fig. 6). All model neurons had AP
threshold at 0.3-nA current injection, which produced a 7-Hz
firing, identical to experiment. Spike trains were weakly adapt-
ing at high current injections, showing some adaptation after
the first one to two spikes with nearly constant ISIs thereafter.
Model neurons displayed nearly linear increases in firing rates,

from 7 to 38 Hz, with increasing current injection from 0.3 to
0.6 nA (Fig. 7).

Somatic and Synaptic Resonance

Although the models were not optimized for resonance
dynamics, the exemplar models displayed resonance with sub-
threshold chirp stimulation at the soma (Fig. 8). Peak reso-
nance was at 4.7 Hz for the detailed model and 5.8 Hz for the
simple model, comparable to the 4.2 Hz value seen experimen-
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Table 1.

Parameters of exemplar models optimized for F-1

Parameter Simple Detailed
Axial resistivity, ()-cm 114.51 137.49
Capacitance density, uF/cm? — 0.7
Spiny capacitance factor (SCF; unitless) —— 1.48
Vini MV —75.04 —70.04
E\eao mV —88.54 —90.22
Brea> Slem? — 0.0260 - 1073
Apical dend diam, wm 1.58 —
Apical dend L, pm 261.90 —
Apical dend cap, uF/cm? 1.03 —
Apical dend 3., S/cm? 0.93-1073 —
Basal dend diam, wm 2.28 —
Basal dend L, um 299.81 —
Basal dend cap, uF/cm? 1.90 —
Basal dend 3., S/cm? 0.76 - 1073 —
Soma diam, wm 28.21 —
Soma L, um 48.41 —_
Soma cap, wF/cm? 1.79 —
Soma 3., S/cm? 0.54-1073 —
Axon diam, um 1.41 —
Axon L, pm 594.29 —
Axon cap, uF/cm? 1.01 —
Axon g, S/cm? 0.25-1073 —
Znw S/cm? 34.5117-107%  15.3130-107°
gy, Slem? 0.1410-107*  0.0661 - 1073
Zxp» Slem? 0.4474-107%  1.1091-107?
Zrap Slem? 13.1104 - 1073 8.4716-1073
ngarV1 MV 11.64 —
Zxa, S/cm? 89.8600 - 1073 61.4003 - 1077
IxaVi/, mV —59.79 —
ngaVip, mV 32.79 —
tqx A, MV —52.10 —
Zpx» S/em 0.0510-107%  0.0725- 1073
Shiftg,, mV 43.89 46.97
P, c/s 44.107° 57-107°
Do €M/s 46-10°° 47-10°°
Tea MS 99.11 16.02
depth,, um 0.12 0.10

Voltages are given in mV; diameters (diam) and lengths (L) are given in um;
conductance densities are given in S/cm? unless indicated otherwise; capacitance
density (cap) is given in uF/cm? permeability is given in cm/s; - indicates
parameter value not optimized or not applicable. F—I, frequency-current; dend,
dendritic; cap, capacitance density.

tally (Sheets et al. 2011). With /,, turned off, this resonance was
abolished.

Variable frequency subthreshold synaptic stimulation in in-
dividual apical dendrites demonstrated how this resonance
could have functional implications for transformation of syn-
aptic inputs (Fig. 8B). Exemplar models showed an increase in
resonant frequency from ~8-17 Hz with distance from the
soma. The resonance gradient corresponded to the HCN chan-
nel density gradient up the apical dendrites, which reaches a
maximum at the nexus before the apical tuft (Harnett et al.
2015). Beyond the nexus, the flattening of HCN channel
density produced a flattening in resonant frequency at ~16-17
Hz. Blocking [, eliminated the resonance gradient (X sym-
bols).

DISCUSSION

In vitro whole cell somatic voltage recordings were used to
develop computer models of SPI neurons at two levels of
complexity: /) a detailed morphological reconstruction of a
SPI neuron with over 700 compartments representing the full
apical and basal dendritic tree, soma, and abbreviated axon;

and 2) a reduced six-compartment model neuron with repre-
sentative apical and basal dendrites, a soma, and an axon.
Detailed and simple model neurons captured key intrinsic
electrophysiological properties observed in vitro: sag potentials
due to 1, (Fig. 5), nonadapting firing during trains (Fig. 6),
linear F—I relationships (Fig. 7), and F-I -dependent resonance
(Fig. 8).

Simulations Suggest Need for Additional Depolarizing
Influences

We based all ion channel distribution on the experimental
literature (Kole et al. 2006; Harnett et al. 2013, 2015; Migliore
and Shepherd 2002). By limiting ourselves to documented
channels, we are likely to have omitted channels that are
present in SPI cells but have not yet been documented. Further
difficulties arise in dendrites where channel identities and
densities are difficult to assess experimentally. Channels may
have been missed experimentally for several reasons: /) influ-
ential channels may be present some short distance out in the
dendrites, allowing them to have an influence on somatic
trajectories yet not be readily identifiable via somatic voltage
clamp due to lack of space clamp; 2) some channels do not
have clean blockers, making them difficult to identify pharma-
cologically; 3) different channel isomers may be present in the
soma or proximal dendrites, which have activation properties,
inactivation properties, and time constants different from the
canonical version of the channel which may have been mea-
sured in other species, other ages, other brain regions, and
other pyramidal cell subtypes; and 4) some channel effects may
be due to different phosphorylation states of identified chan-
nels, making them more difficult to identify in a slice where
these states cannot be readily manipulated.

Further evidence for the hypothesized missing channels
comes from the simulations. Voltage trajectories were not
precisely fit, as seen in interspike interval voltage (Fig. 3B),
depolarized subthreshold trajectories (Fig. 5) and spike shape
(not shown). In each of these cases, there appeared to
be difficulty achieving an adequate degree of depolarization.
We therefore predict that the models are missing one or more
additional depolarizing influences. Specific depolarizing cur-
rents that we suspect may play a role in balancing out the
hyperpolarizing influences of K, channels would include I,
T-type low-threshold activated Ca>* channel: Inaps PETSiStENt
Na™ current; and /5, Nonspecific cation channel. We also did
not explicitly explore backpropagating APs, which will depend
on densities of depolarizing dendritic channels.

Choice of Optimization Algorithms and Fitness Functions

There are a large variety of fitting and optimization tools
available to the modeler, and each of these tools has many
variants (Bahl et al. 2012; Jolivet et al. 2004, 2008; Van Geit
et al. 2007). Selecting a good fitness tool is not easy, and it is
in some cases desirable to use an optimization to find the better
(never alas best) optimization algorithm or to set the specific
parameters (learning rate, subpopulation selection criteria,
etc.). We have done this type of optimization-optimization
previously in discovering the learning parameters for a biomi-
metic learning model (reinforcement learning) using a genetic
algorithm (Dura-Bernal et al. 2016). We note that these strat-
egies have the potential for infinite regress: who shall optimize
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Fig. 5. Corticospinal neuron (SPI) models replicate in
- —— Experiment vitro subthreshold responses to current injections, includ-
IE ing bidirectional /,-dependent sag in somatic membrane
0 — Detailed potential. The 1-s subthreshold somatic current injection
oo me N §tz_1rts Aat 500 ms (—0.1, —0.05, 0.05, and 0.1-nA currer_lt
—— Simple injections arrayed from bottom to top). Black: experi-
ment; red: detailed SPI neuron model; blue: simplified

SPI neuron model.
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for choice of the optimization-optimization algorithms them-
selves?

In the present instance, we devised a two-step optimization
procedure. We started with PRAXIS to determine initial pas-
sive parameters (e.g., capacitance, axial resistivity) by adaptive
coordinate descent. This first step produced a relatively stable
resting membrane potential from which firing properties could
be molded. Strong nonlinearities, at whose heart lies the
phenomenon of the spike threshold, militates against using any
such continuous progression through parameter space to con-
verge dynamics onto the other fitness functions, those for
spiking and interspike trajectories. These nonlinearities instead
suggested the use of algorithms in the genetic algorithm fam-
ily, such as the evolutionary multiobjective optimization
(EMO) used here, to move discontinuously in parameter space.
We used EMO in this second stage to search broadly in the
large parameter space of multiple ion channels. Our approach
was able to optimize models of different degrees of complex-
ity, simple and detailed, equally well.

Next, we must consider our selection of fitness functions
(Van Geit et al. 2008, 2016). The models in the archives
reflected competitive pressures between different fitness func-
tions (Fig. 3) for selecting specific parameter values. For
example, F-I and ISI voltage error were inversely correlated
because high gg,. was required for good F-I fit (to reduce
hyperexcitability) but produced overhyperpolarization in be-
tween spikes, reducing ISI voltage fit. These tradeoffs demon-
strate the multifactorial dynamic landscape that our neuronal
models occupy and the difficulty of finding a best model. One
approach to finding the best is to combine the different fitness
scores, possibly with different weightings, to produce a single
scalar value (Rumbell et al. 2016). Our approach was to select
many different best models based on exhibiting desired dy-
namical features singly or in combination. Because our aim is
make the models useful for incorporation into network models,
we focused on F-I response as a surrogate for this cell type’s
likely responsivity to ongoing background activation. Respon-

siveness to irregular background activity, rather than current
clamp, might provide a better indicator for this (Mainen and
Sejnowski 1995).

In general, one chooses fitness functions that complement
one another. Because of the complementarity, the fitness func-
tions pushed channel densities in different directions, as shown
in Figs. 2, B and C, and 3. Focusing on spike times, we also
provided some fitness function redundancy by using both
overall spiking rate (F-I), along with spike timing [instanta-
neous firing rate (IFR)]. The degree of redundancy of these two
measures was demonstrated in the final archive (Fig. 2, A and
C). We included subthreshold fit, determined initially by
PRAXIS, as an EMO fitness function as well so as not to lose
fitness for this criterion while optimizing for the others.

Depending on the type of measure being fit, there are
multiple different methods for designing the fitness function. In
the case of subthreshold voltage trajectory with current clamp,
for example, the fitness function could be a simple least-mean-
squared-error fit to voltage. For looking at spiking, the function
ignored voltage, utilizing spike times. For interspike voltage
trajectories, the fitness function was made more complicated
by the need to fit the pattern of depolarization and hyperpo-
larization even in cases where the interspike interval was not
precisely fit. Spike form was one of the more difficult fitness
functions, one for which we tried a number of possibilities,
finally utilizing a pattern matching algorithm making use of
target voltage forms.

The Public Archive: Opportunities and Caveats

In contrast to the classical approach of developing an indi-
vidual model that exhibits excellence across a desired set of
fitness functions, using a database or ensemble of models
allows exploring how different parameters contribute to di-
verse dynamics and allows determining tradeoffs between
different fitness functions (Giinay et al. 2008, 2009; Prinz et al.
2003). Databases also afford simulating and comparing a set of
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Fig. 6. SPI model neurons replicate in vitro firing patterns. Detailed (B) and simplified (C) model neurons replicate in vitro (A) firing patterns (1-s somatic current
injections from 0.25-0.60 nA in 0.05-nA increments from bottom to top). Action potential threshold is at 0.30-nA somatic current injection (2nd trace from
bottom). Black: experiment; red: detailed SPI neuron model; blue: simplified SPI neuron model.

models under novel conditions that were not initially used in
the optimization. Recent research has demonstrated that a
subset of models will fail when tested with input conditions or
activation functions that differ from those for which they were
optimized (Holmes et al. 2006; Almog and Korngreen 2016).

There are several ways to populate model databases, ranging
from multidimensional grid search to EMO algorithms. Grid
search samples all parameter space equally, while EMO hones
in on areas of particular parameter space and can get caught in
local minima. A recent study used an exhaustive multidimen-
sional grid search to sample parameters of detailed compart-
mental models of hippocampal interneurons, and offered pre-
dictions on the distribution of HCN channels in dendrites
(Sekulic et al. 2014, 2015). It is also possible to extend
previously existing databases with new dynamical features.
One such study on leech heart interneuron models added

nonlinear dynamic features to a preexisting database and then
determined factors that contribute to neuronal multistability
(Marin et al. 2013; Doloc-Mihu and Calabrese 2011). Previous
work used EMO to populate a database of cortical layer 5b
pyramidal neurons, which displayed multiple realistic dynam-
ics in the dendrites (backpropagating APs, calcium spikes, etc.)
(Hay et al. 2011). Our approach was to also use EMO to create
an archive and then hone in on models of interest for detailed
exploration of their dynamics.

We have made our two model archives, each with ~10,000
models, available in their entirety for public use as building
blocks to be incorporated into neocortical models. Many users
will elect to keep things consistent within a network by picking
only a single model, whether a detailed model or a simplified
one, and replicating that model multiple times to produce the
SPI population for their network. In this case, we would
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Fig. 7. Exemplar models showed linear firing frequency-current (F-I) relation-
ship with firing threshold at 0.3-nA somatic current injection.

suggest using one of the two exemplar models demonstrated in
Figs. 6 and 7, which would be expected to provide the best
approximation of excitability. Other users might instead elect
to work with models that show better subthreshold or inter-
spike fitness, perhaps to explore issues of activity resonance,
whether in the single cell or in the network (see Fig. 8). In
some network settings, it may turn out that models with more
accurate resonant properties would produce more accurate
patterns of population activity than would models with more
accurate excitability under current clamp. This would be ex-
pected in settings where irregular ongoing background activity
produces an irregular membrane potential near threshold. In this
case, spikes would occur at peaks determined by some combina-
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tion of the background activity and intrinsic resonance and would
not be related to the timing seen with constant current injection
(Mainen and Sejnowski 1995). Alternatively, it may be found that
models with balanced fits across fitness functions are better for
replicating network physiology. This determination will be made
empirically by in silico experimentation with implications for
physiological experiments that aim to produce single cell data,
typically from an in vitro preparation, which is relevant to a cell’s
physiological behavior in vivo.

The principle of degeneracy, shown here again, states that
diverse parameter sets can produce similar dynamical behav-
iors (Golowasch et al. 2002; Prinz et al. 2004; Neymotin et al.
2016a). Consideration of this principle suggests an alternative
approach to neuronal network design that would embrace
diversity by including many different models with different
parameterizations in a network. A set of differently parame-
terized models could be chosen that all illustrate strong fitness
in one area, be that firing rate or subthreshold properties. A still
more diverse population could be selected that would represent
fitness across different dynamical aspects. A further use of
multiple models would be to confirm model robustness by
utilizing multiple different models and confirming similar
behavior, just as one utilizes multiple random seeds when
assessing robustness in a simulation whose activity is in part
determined by random wiring or randomly generated drive.

These diverse models can also be compared with measured
physiological population diversity in SPI cells (Suter et al.
2013, Table 1). Substantial variability is seen in several of the
measures used for our fitness assessment, including sag of
20.0 * 3.6% (mV = SD), input resistance of 35.7 = 7.6 (M(}),
and F-I slope of 115 *£ 29 (Hz/nA). This variability is seen
despite common recording conditions: same species, same
strain, same temperature, same age (Tripathy et al. 2015). The
degree of heterogeneity could also be used as an additional
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Fig. 8. Exemplar neurons show somatic and dendritic resonance. A: subthreshold chirp somatic current input produces peak voltage resonance between ~4 and
6 Hz in models and experiment (impedance Z measured as ratio of oscillatory V/I power; see MATERIALS AND METHODS). Vertical dotted lines indicate resonant
peak frequencies. B: synaptic resonance based on apical dendrite distance from soma measured as apical dendrite AMPA stimulation that produces maximal
excitatory postsynaptic potentials (EPSP) amplitude in soma for /, on (@) vs. [, off (X).
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criterion for selection of models for the archives. Ensemble
methods could thereby offer further predictive power over the
traditional one-model-fits-all strategy. Technically, mainte-
nance and fitting of heterogeneity would also be useful since
lack of diversity during EMO can prevent further improve-
ments across multiple fitness functions. It would also be
interesting to conduct further studies to determine whether
some of the variability in particular measures could be ex-
plained by the tradeoff across measures that we note above.
The model archive will suggest underlying parameter associ-
ations that could explain dynamic variability, e.g., an obvious
prediction is that variability in density of somatic 7, will largely
predict the variability in sag measured from the soma. Changes
in dynamics as well as change in degree of variability are
observed across maturation and could also be correlated with
model variability overall and on a measure-by-measure basis.

Input Resonance

I, played a prominent role in several dynamical features in both
detailed and simple models, producing the characteristic sag with
hyperpolarization and contributing to interspike voltage trajectory.
I, also provided band-pass filtering of artificial inputs producing
peak resonant frequencies (4—6 Hz) similar to those observed in
vitro (Fig. 8). This represents a dynamical property that was not
explicitly fit and that emerged from a combination of the fitting of
subthreshold responses and interspike voltage trajectories and the
intrinsic dynamics of the ,, current itself.

Our results predict that the presence of increasing I, density
along the apical dendrite would produce a corresponding gra-
dient of resonant frequencies, increasing with distance from the
soma. This differential resonance would then provide differ-
ential responsiveness to particular patterns or ongoing frequen-
cies of synaptic input at different cortical layers. Such a
dynamical gradient of resonant frequencies would provide a
novel signal processing function to these dendrites, which
would then be tuned to respond to this frequency whether
delivered to the layer by remote excitatory projections, inter-
laminar excitatory projections, intralaminar excitatory projec-
tions, or local inhibitory projections. Activating a particular
section of dendrite at its characteristic stimulation frequency
would augment voltage and calcium locally, potentially lead-
ing to local plasticity events, including plasticity involving I,
itself (Neymotin et al. 2013a, 2014, 2016). Additionally, this
local depolarization would increase the chances of that cell
generating a spike. Activating two or more layers at their
different stimulation frequencies would be expected to further
increase this output probability. In this way the SPI pyramidal
neurons would have the ability to parse input frequencies in a
layer-dependent manner. This mechanism is similar to one
described previously by (Laudanski et al. 2014), although we
were looking at far lower stimulation frequencies.

Different cortical layers utilize different frequencies for
receiving and processing incoming information (Schroeder and
Lakatos 2009; Lakatos et al. 2008, 2013, 2016). The general
pattern that has emerged across several brain areas involves
beta and gamma superficially (layer 2/3; supragranular in
sensory areas) with lower frequencies, particularly alpha, deep
(LS; infragranular) (Lundqvist et al. 2006; Silva et al. 1991;
Ainsworth et al. 2011). Passing through these laminae, we
would then a priori predict that apical dendrites would be tuned

to respond optimally to the high gamma frequencies distally
and lower alpha frequencies more proximally, matching reso-
nance to the layer traversed. Although we found this pattern of
lower to higher frequency proximal to distal, the frequencies
that our model predict, alpha to low-beta ranges, do not match
the spread of frequencies, up to gamma, expected from this
physiological conjecture. We would expect that, as greater
fidelity to dendritic physiology comes with improved knowl-
edge of dendritic channel densities and types, these predictions
will match. Experimentally, correlations between laminar pop-
ulation oscillation and apical dendrite resonance frequencies
could be tested using laminar electrode arrays to span cortical
layers and compare local field potentials, reflecting the former,
with current source density, reflecting the latter (Mo et al.
2011; Neymotin et al. 2013b; Lakatos et al. 2014).
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