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Abstract

Neocortical mechanisms of learning sensorimotor control involve a complex series of

interactions at multiple levels, from synaptic mechanisms to cellular dynamics to net-

work connectomics. We developed a model of sensory and motor neocortex consisting

of 704 spiking model-neurons. Sensory and motor populations included excitatory cells

and two types of interneurons. Neurons were interconnected with AMPA/NMDA, and

GABAA synapses. We trained our model using spike-timing-dependent reinforcement

learning to control a 2-joint virtual arm to reach to a fixed target. For each of 125

trained networks, we used 200 training sessions, each involving 15 s reaches to the tar-

get from 16 starting positions. Learning altered network dynamics, with enhancements

to neuronal synchrony and behaviorally-relevant information flow between neurons.

After learning, networks demonstrated retention of behaviorally-relevant memories by

utilizing proprioceptive information to perform reach-to-target from multiple starting

positions. Networks dynamically controlled which joint rotations to utilize to reach a

target, depending on current arm position. Learning-dependent network reorganization

was evident in both sensory and motor populations – learned synaptic weights showed

target-specific patterning optimized for particular reach movements. Our model em-

bodies an integrative hypothesis of sensorimotor cortical learning which could be used

to interpret future electrophysiological data recorded in vivo from sensorimotor learn-

ing experiments. We used our model to make the following predictions: learning en-

2



hances synchrony in neuronal populations and behaviorally-relevant information flow

across neuronal populations; enhanced sensory processing aids task-relevant motor per-

formance; the relative ease of a particular movement in vivo depends on the amount of

sensory information required to complete the movement.

1 Introduction

Adaptive movements in response to stimuli sensed from the world are a vital biological

function. Although arm reaching towards a target is a basic movement, the neocorti-

cal mechanisms allowing sensory information to be used in the generation of reaches

are enormously complex and difficult to track (Shadmehr and Wise, 2005). Learning

brings neuronal and physical dynamics together. In studies of birdsong, it has been

demonstrated that reinforcement learning (RL) operates on random babbling (Sober

and Brainard, 2009). In that setting, initially random movements initiated by motor

neocortex may be rewarded or punished via an error signal affecting neuromodulatory

control of plasticity via dopamine (Kubikova and Kostál, 2010). In primates, frontal

cortex, including primary motor area M1, is innervated by dopaminergic projections

from the ventral tegmental area (Luft and Schwarz, 2009; Molina-Luna et al., 2009;

Hosp et al., 2011), and recent neurophysiological evidence points to reward modula-

tion of M1 activity (Marsh et al., 2011). It has been suggested that similar babble/RL

mechanisms may play a role in limb target-learning.

Many brain areas are involved in motor learning, likely including spinal cord, red

nucleus, and thalamus, as well as the more well-characterized basal ganglia, cerebel-
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lum, and neocortex (Sanes, 2003). In addition to individual brain areas, connections

between areas are likely vital (Graybiel et al., 1994; Hikosaka et al., 2002). Learning

in these different areas will likely play different roles for different types of tasks and at

different times in development. Neonates can already perform directed reaching move-

ments at birth, and learn to reach a target within 15 weeks, using proprioceptive and

visual feedback (Berthier et al., 1999; von Hofsten, 1979). This process has been sug-

gested to be primarily cortical (Berthier, 2011). Sensorimotor integration of reaching

is learned through analysis of mismatches of perception and desired actions (Corbetta

and Snapp-Childs, 2009). Similarly, adult learning of complex tasks, such as serving

in tennis, utilizes the neocortical substrate at different stages of the learning process

(Sanes, 2003).

Computational modeling of biologically-realistic neuronal networks can aid in val-

idating theories of motor learning and predicting how it occurs in vivo (Houk and

Wise, 1995). Recently, learning models of spiking neurons using a goal-driven or re-

inforcement learning signal have been developed (Farries and Fairhall, 2007; Florian,

2007; Izhikevich, 2007; Potjans et al., 2009; Seung, 2003), many using spike-timing-

dependent plasticity (Roberts and Bell, 2002; Rowan and Neymotin, 2013; Song et al.,

2000; Neymotin et al., 2011b). Here, we present a simplified sensorimotor cortex net-

work with an input sensory area (S1) that processes inputs from muscles, and an output

area, representing primary motor cortex (M1), that projects to muscles of a virtual arm.

The present paper extends our previous efforts to create a spiking neuronal model of

cortical reinforcement learning of arm reaching (Chadderdon et al., 2012). In that paper,

we demonstrated the feasibility of the dopamine system-inspired value-driven learning
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algorithm used in this paper in allowing a swiveling forearm segment controller to learn

a mapping from proprioceptive state to flexion and extension motor commands needed

to direct the virtual hand to the target: a task requiring only one degree-of-freedom mo-

tion. Here, we extend the scope of the task to two degrees of freedom, permitting the

hand to explore a more complete virtual 2D workspace. This is a more demanding and

complex task because shoulder and elbow angle changes have the potential to interfere

with each other in adjusting the hand-to-target error, and the proprioceptive-to-motor

command mapping to be learned requires conjunction of the information of the two dif-

ferent joints. We also increased the number of synaptic connections which have active

plasticity, which adds further challenges, as well as flexibility, for the learning method.

In addition, we enhanced the robustness of the training and testing paradigm: we first

trained the system, then turned off further learning, and only then quantified reach-

to-target performance. Turning off further learning ensured that what was previously

learned and the ongoing effects of the learning algorithm were isolated. Even with the

added complexity of a 2D reaching task, and the new testing paradigm, the model was

still able to learn the new reaching task. Analysis comparing naive and trained network

dynamics showed a distinct increase of synchrony and task-relevant information flow,

as measured by coefficient of variation and normalized transfer entropy, respectively.

These results have predictive power and may allow for better future understanding of

electrophysiological data recorded in vivo from sensorimotor learning experiments.
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2 Methods

System overview

The entire closed-loop learning system architecture is shown in Fig. 1. A Brain and its

interaction with an artificial Environment were modeled, with the Environment contain-

ing a Virtual Arm, which was a part of the simulated agent’s body, and a Target object

which the agent was supposed to reach for. The Virtual Arm possessed two segments

(upper-arm and forearm) which could be swiveled through two joints (shoulder and el-

bow) so that the arm and hand were able to move in a planar space. Each of the arm

joints possessed a pair of flexor and extensor muscles for increasing / decreasing the

angles, respectively, and which output a “stretch receptor” signal to the degree that the

muscle was contracted.

An Actor system consisting of proprioceptive sensory neurons (P), sensory cells (S),

and motor cells (M) was used to control this system. The P cell receptive fields were

tuned so that individual cells fired for a narrow range of particular “muscle stretches”

for one of the four muscles. These P cells sent fixed random weights to the S cells, so

that the S cells were capable of representing the conjunct of positions in both joints,

though this feature was not optimally hard-wired for these cells. The S cells, then, sent

plastic weights to the M cells, which possessed a separate population of cells for each

of the four muscles capable of stimulating contraction to the degree the corresponding

subpopulations were active. Plasticity was present within the S and M unit populations

and between them in both directions. This Actor effectively performed a mapping be-

tween limb state, as measured by muscle stretch, and a set of commands for driving
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each muscle. The extensor population activity was subtracted from the flexor activity

for a particular joint (shoulder, elbow) to yield a joint angle rotation command for the

virtual arm.

It should be noted that the Actor in this system was learning to make a “blind”

reach for a single learned target (proprioceptive-to-motor-command mapping). The

Critic component of the system, however, possessed a means of calculating the visual

difference between the hand’s location and the target (Error Evaluation) and determin-

ing from the last two viewed hand coordinates whether the hand was getting closer or

farther away from the target. Based on which was the case, the Critic sent a global

reward/punisher signal to the Actor. Plastic synapses kept eligibility traces which allow

credit/blame assignment. Rewards caused a global increase in the tagged weights, and

punishers caused a decrease, effectively implementing Thorndike’s Law of Effect in the

system (Thorndike, 1911), i.e., allowing rewarded behaviors to be “stamped in” and

punished behaviors to be “stamped out.”

As a result of this arrangement, even though the Actor did not possess vision, it was

possible in theory for it to learn a mapping driving the hand towards a visual located

target, provided that target was not moved after training. In an ideal learning case by

this system, the limb configuration corresponding with the target’s location would learn

to not move in either direction, but an over-flexed arm would learn to extend and an

over-extended arm would learn to flex, so that the Actor had learned an attractor for the

remembered target stimulus. If the Critic was not turned off before testing, the system

effectively possessed vision and could in theory learn to adjust its responses even if the

target was moved, although this was not tested.
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An important component to the system in the Actor was “babbling” noise that was

injected into the M cells. An untrained system thus possessed some tendencies to move

weakly in a random direction. The Critic, then, was able to allow operant conditioning

to shape the motor commands in the context of limb state.

The model was implemented in the NEURON 7.2 (Carnevale and Hines, 2006) sim-

ulator for Linux and is available on ModelDB (Peterson et al., 1996) (https://senselab.-

med.yale.edu/modeldb). We collected performance for a number of targets, random

network wirings, and sets of injected babbling noise, and ran both naive versions of

the model for these and multi-epoch training sessions on a number of different starting

positions of the arm. In addition to performance measures, we also compared the naive

and trained models using measures of population firing synchrony and inter-population

information flow.

The remaining Methods subsections elaborate on the details of the model’s archi-

tecture. First, the environment (virtual arm and target) are explained, then the actor

portion of the model, including the P cells, and the S and M cells (which constitute the

primary spiking learning neuron portion of the model). Then the critic and reinforce-

ment learning algorithm are explained in more detail, and finally the training and testing

trial scheme we used and the measures we used for network population synchrony and

information flow between network populations.
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Figure 1: Overview of model. A virtual arm with joint angles θsh and θel (θsh : angle

of upper arm with respect to x-axis; θel : angle of forearm with respect to upper arm)

controlled by two pairs of flexor and extensor muscles, is trained to reach towards a

target. A proprioceptive (P) sensory area translates muscle lengths into an arm con-

figuration representation. Plasticity is present in excitatory to excitatory recurrent con-

nections within the higher-order sensory (S) and the motor (M) areas, in feed-forward

and feed-back excitatory to excitatory connections between the higher-order sensory

and the motor areas, and in feed-forward connections from excitatory to inhibitory cells

within each area. Motor units drive the muscles to change the joint angle. The Actor

(above) is trained by the Critic which evaluates error and provides a global reward or

punishment signal.
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Environment: virtual arm and target

The virtual arm consisted of two segments representing the upper arm (length 1) and

forearm (length 2). There were two joint angles for the two joints (shoulder: θsh; elbow:

θel) that were allowed to vary from fully extended (θsh: −45◦; θel: 0◦) to fully flexed

(θsh: 135◦; θel: 135◦; large range of angles to more fully test learning). For each joint,

an extensor and flexor muscle (lengths mext and mflex) always reflected the current

joint angle in the relationship as follows:

mext =
(θ − θmin)

θmax − θmin
(1)

mflex = 1−mext. (2)

Arm position updates were provided at 50 ms intervals, based on extensor and flexor

EM (excitatory cells in the motor area) spike counts integrated from a 50 ms window

that began 50 ms prior to update time (50 ms network-to-muscle propagation delay).

The angle change ∆θ = Spikesflexor − Spikesextensor for each joint was the differ-

ence between the corresponding EM spike counts from flexor and extensor populations

during the prior interval, with each spike difference translating to a 1◦ rotation. For

simplicity, the arm model did not contain physical attributes, such as mass and inertia.

P drive activity updated after an additional 25 ms delay which represented peripheral

and subcortical processing. Reinforcement occurred every 50 ms with calculation of

hand-to-target error. The target remained stationary during the simulation.
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Actor: unit types and interconnectivity

The actor consisted of the proprioceptive sensory (P), higher-order sensory (S), and

motor (M) populations described above (Fig. 1). Details of the cell models are described

below. Input to the S cells was provided by 192 P cells, representing muscle lengths in

4 groups (two flexor- and extensor-associated groups for each joint).

The rest of the network consisted of both S (sensory) and M (motor) cell popula-

tions. The S population included 192 excitatory cells (ES cells), 44 fast-spiking in-

terneurons (IS), and 20 low-threshold spiking interneurons (ILS); similarly, the M net-

work had 192 EM, 44 IM, and 20 ILM cells. The EM population was divided into four

48-cell subpopulations dedicated to extension and flexion about each joint, projecting to

the extensor and flexor muscles. The number of excitatory and inhibitory cells within an

area was selected to keep 75% (192/256) of the neurons as excitatory, to approximate

the ratios in neocortex.

Cells were connected probabilistically (fixed convergence; variable divergence) with

connection densities and initial synaptic weights varying depending on pre- and post-

synaptic cell types (Table 1). Connection densities were within the range determined

experimentally, which are ∼1-100% depending on pre- and post-synaptic cell type

(Thomson et al., 2002; Thomson and Bannister, 2003; Bannister, 2005). Initial synaptic

weights were set to relatively low values, so as to resemble activity in vivo, which typi-

cally requires several pre-synaptic inputs to arrive within a short time-window in order

to activate a postsynaptic neuron.
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Table 1: Connectivity parameters.

Pre Post p Conv W Pre Post p Conv W

P ES 0.11250 22 15.0000 ES ES 0.05625 11 * 1.3200

ES IS 0.48375 93 * 1.9550 ES ILS 0.57375 110 * 0.9775

ES EM 0.09000 17 * 1.7600 IS ES 0.49500 22 4.5000

IS IS 0.69750 31 4.5000 IS ILS 0.38250 17 4.5000

ILS ES 0.39375 8 1.2450 ILS IS 0.59625 12 2.2500

ILS ILS 0.10125 2 4.5000 EM ES 0.01913 4 * 0.4800

EM EM 0.05625 11 * 1.1880 EM IM 0.48375 93 * 1.9550

EM ILM 0.57375 110 * 0.9775 IM EM 0.49500 22 9.0000

IM IM 0.69750 31 4.5000 IM ILM 0.38250 17 4.5000

ILM EM 0.39375 8 2.4900 ILM IM 0.59625 12 2.2500

ILM ILM 0.10125 2 4.5000

Area (Pre: Presynaptic type; Post: Postsynaptic type) interconnection probabilities

(p), convergence (Conv), and starting weights (W ). * next to W represents plastic

connection modified during learning. p is the probability of a connection being

included among all possible connections between the 2 areas. Conv is the number of

inputs each cell of type Post receives from type Pre. E cells used AMPA and NMDA

synapses (NMDA, not displayed, had weights set at 10% of the colocalized AMPA

synapse).
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Actor: proprioceptive sensory (P) cell model

Proprioceptive sensory (P) cells (Fig. 1) were modeled using a standard, single com-

partment (diameter = 30 µm), parallel-conductance model with input current, to allow

continuous mapping of muscle lengths to current injections provided to these cells. The

rate of change of a P neuron’s voltage (V ) was represented as−CmdV
dt

= gpas∗V +idrive,

where Cm is the capacitive density (1 µF/cm2), and idrive was a current set according

to muscle length. gpas represents the leak conductance (0.001 nS), which was associ-

ated with a reversal potential of 0 mV. When a P neuron’s voltage passed threshold,

the neuron emitted a spike, and was set to a refractory state for 10 ms. Each P cell

was tuned to produce bursting approaching 100 Hz (limited by refractory period) over a

narrow range of adjacent, non-overlapping muscle lengths, by setting the P cell’s idrive

variable to a heightened level. The idrive variable of each P cell was updated when the

arm moved (every 50 ms interval).

Actor: primary neuron model (sensory (S) and motor (M) cells)

Individual neurons in the higher-order sensory (S) and motor (M) areas were modeled

as event-driven, rule-based dynamical units with many of the key features found in real

neurons, including adaptation, bursting, depolarization blockade, and voltage-sensitive

NMDA conductance (Lytton and Stewart, 2005, 2006; Lytton and Omurtag, 2007; Lyt-

ton et al., 2008a,b; Neymotin et al., 2011d; Kerr et al., 2012, 2013). Event-driven pro-

cessing provides a faster alternative to network integration: a presynaptic spike is an

event that arrives after a delay at postsynaptic cells; this arrival is then a subsequent
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Table 2: Neuron model parameters.

Type VRMP (mV) Tn (mV) Bn (mV) τA (ms) R τR (ms) H (mV) τH (ms)

E -65 -40 -25 5 0.75 8.0 1.0 400

I -63 -40 -10 2.5 0.25 1.5 0.5 50

IL -65 -47 -10 2.5 0.25 1.5 0.5 50

Parameters (described below) of the neuron model for each major population type.

These parameters are based on previously published models of neocortex, which were

culled from the experimental and modeling literature (Kerr et al., 2012, 2013;

Neymotin et al., 2011b,a,d).

event that triggers further processing in the postsynaptic cells. Cells were parameter-

ized as excitatory (E), fast-spiking inhibitory (I), and low-threshold-spiking inhibitory

(IL; Table 2).

Each neuron had a membrane voltage state variable (Vm) with a baseline value de-

termined by a resting membrane potential parameter (VRMP , set at −65 mV for pyra-

midal neurons and low-threshold-spiking interneurons, and at −63 mV for fast-spiking

interneurons). This membrane voltage was updated by one of three events: synaptic

input, threshold spike generation, and refractory period. These events are described

briefly below; further detail can be found in the papers cited and code provided on

ModelDB (Peterson et al., 1996) (https://senselab.med.yale.edu/modeldb).
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Synaptic input

The response of the membrane voltage to synaptic input was modeled as an instanta-

neous rise and exponential decay: Vn(t) = Vn(t0)+ws(1−Vn(t0)/Ei)e
− t−t0

τi , where Vn

is the membrane voltage of neuron n; t0 is the synaptic event time (i.e., t− t0 is the time

since the event); ws is the weight of synaptic connection s; Ei is the reversal potential

of ion channel i, relative to resting membrane potential (where i = AMPA, NMDA, or

GABAA; and EAMPA = 65 mV, ENMDA = 90 mV, and EGABAA
= −15 mV); and τi is

the receptor time constant for ion channel i (where τAMPA = 20 ms; τNMDA = 300 ms;

and τGABAA
= 10 or 20 ms for somatic and dendritic GABAA, respectively).

In addition to spikes generated by cells in the model, subthreshold Poisson-distributed

spike inputs to each synapse of all units except the P and ES units were used to provide

ongoing activity and babble (Table 3). These Poisson stimuli also represented inputs

from other neurons not explicitly simulated. Since the neuron model is a point-neuron

model, each synapse represents the locus of convergent inputs from multiple neurons.

Action potentials

A neuron fires an action potential at time t if Vn(t) > Tn(t) and Vn(t) < Bn, where Vn,

Tn, and Bn are the membrane voltage, threshold voltage (−40 mV for pyramidal neu-

rons and fast-spiking interneurons, −47 mV for low-threshold-spiking interneurons),

and blockade voltage (−10 mV for interneurons and −25 mV for pyramidal neurons),

respectively, for neuron n. Action potentials arrive at target neurons at time t2 = t1+τs,

where t1 is the time the first neuron fired, and τs is the synaptic delay. τs values were
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Table 3: Noise parameters.

Cell Synapse W Rate

IS GABAsoma
A 1.875 100

IS AMPAdend 4.125 200

IS GABAdend
A 1.875 100

ILS GABAsoma
A 1.875 100

ILS AMPAdend 3.000 200

ILS GABAdend
A 1.875 100

EM GABAsoma
A 1.875 100

EM AMPAdend 3.938 200

EM GABAdend
A 1.875 100

IM GABAsoma
A 1.875 100

IM AMPAdend 4.125 200

IM GABAdend
A 1.875 100

ILM GABAsoma
A 1.875 100

ILM AMPAdend 3.000 200

ILM GABAdend
A 1.875 100

Noise stimulation to synapses of the different cell types. Weight (W ) values are

afferent weights. Rate values are average stimulation frequencies in Hz (inputs are

Poisson distributed). This stimulation represents afferent inputs from multiple

presynaptic cells, which are not explicitly simulated.
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selected from a uniform distribution ranging between 3 – 5 ms for dendritic AMPA,

NMDA, and GABAA synapses, and were selected from a uniform distribution rang-

ing between 1.8 – 2.2 ms for somatic GABAA synapses. Synaptic weights were fixed

between a given set of populations except for those involved in learning (described in

System overview above).

Refractory period

After firing, a neuron cannot fire during the absolute refractory period, τA (2.5 ms

for interneurons and 5 ms for pyramidal neurons). Firing is reduced during the rela-

tive refractory period by two effects: first, an increase in threshold potential, Tn(t) =(
1 +Re

− t−t0
τR

)
Tn(t0), where R is the fractional increase in threshold voltage due to

the relative refractory period (0.25 for interneurons and 0.75 for pyramidal neurons)

and τR is its time constant (1.5 ms for interneurons and 8 ms for pyramidal neurons);

and second, by hyperpolarization, Vn(t) = Vn(t0) − He
− t−t0

τH , where H is the amount

of hyperpolarization (0.5 mV for interneurons and 1 mV for pyramidal neurons) and τH

is its time constant (50 ms for interneurons and 400 ms for pyramidal neurons).

Critic: reinforcement learning algorithm

The RL algorithm implemented Thorndike’s Law of Effect using global reward and

punishment signals (Thorndike, 1911). The network is the Actor. The plastic AMPA

weights in Table 1 were trained to implement the learned sensorimotor mappings. The

Critic, a global reinforcement signal, was driven by the first derivative of error between

position and target during 2 successive time points (reward for decrease; punishment for
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increase), and therefore the reward/punishment signals were delivered at every move-

ment generated by the network. As in (Izhikevich, 2007), we used a spike-timing-

dependent rule to trigger eligibility traces to solve the credit assignment problem. The

eligibility traces were binary, turning on for a synapse when a postsynaptic spike fol-

lowed a presynaptic spike within a time window of 100 ms; eligibility ceased after 100

ms. When reward or punishment was delivered, eligibility-tagged synapses were po-

tentiated (long-term potentiation LTP), or depressed (long-term depression LTD), cor-

respondingly.

Synaptic weights w(t) were updated (for LTP/reward and LTD/punishment) utiliz-

ing weight scale factors, ws:

w(t) = w0 · ws(t)

ws(t+ 1) = ws(t) + ∆ws

∆ws =


winc · (1− ws(t)/wmaxs ) for LTP reward

−winc · ws(t)/wmaxs for LTD punisher

where wmaxs is maximum weight scale factor, w0 is the initial synaptic weight, and winc

is the weight scale increment. ws was initialized to 1.0 for all synapses and varied

between 0 and wmaxs . wmaxs was set to 6 and 2.5 times the synaptic weight of E → E

and E→ I baseline weights. winc was set to 25% of baseline synaptic weights.
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Figure 2: Schematic of arm orientations at all five target locations. Each “X” symbol

represents a target. The arm is drawn in an orientation that maintains its endpoint on

each of the five targets. Targets were chosen to allow thorough testing of reaching (both

extrema and intermediate positions).
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Training and testing paradigm

Networks were trained to reach the arm to a single target (targets shown in Fig. 2).

Training a network to reach to a single target consisted of 200 training sessions. Each

training session consisted of allowing the network to perform 15 s of reaching, once

from each of 16 sequential starting positions. The 16 starting positions were arranged

from minimum to maximum angles for the two joints. We configured starting angles

in this way to teach the network to control movement of the arm to the target from the

entirety of positions in the 2D plane. Targets were chosen to allow thorough testing of

reaching (both extrema and intermediate positions).

After training, learning was turned off and each network’s performance was as-

sessed with the arm initialized from each of the 16 starting positions used for training.

A reach was considered successful if the arm end-point was moved to a position where

Cartesian error was ≤ 1. Overall learning performance for a target was calculated as

the fraction of successful reach movements (Accuracy). A similar accuracy score was

used for angular performance for each joint: when the angular error was ≤ 10 degrees,

the reach for that given joint was a success.

Data analysis

Data obtained from 400 naive trials (5 random network wirings, 5 random input seeds,

16 starting positions) were compared with 2000 trained trials (5 random network wirings,

5 random input seeds, 5 targets, 16 starting positions).

Synchrony between cells within different populations was measured using a nor-
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malized population coefficient of variation (CVp (Tiesinga and Sejnowski, 2004)). CVp

makes use of the population’s interspike interval, defined for the temporally ordered set

of spikes generated by neurons in the population as: τv = tv+1 − tv, where ti indicates

the ith spike time. CVp is then defined as
√
<τ2

v>−<τv>2

<τv>
, where p stands for population

and <> denotes the average over all intervals. CVp is normalized to be between 0–1

by subtracting 1 and dividing by
√
N . After the normalization, 0 indicates independent

Poisson process synchrony and 1 indicates maximum synchrony. Values that dip below

0 are set to 0 to allow calculating means.

We used normalized transfer entropy (nTE) between multiunit activity vectors (MUAs)

of different populations before and after training as a measure of information flow

(Gourevitch and Eggermont, 2007; Neymotin et al., 2011a). MUA vectors were the

time series formed by counting the number of spikes generated by a population in ev-

ery 5 millisecond interval. nTE is a normalized version of transfer entropy, defined from

probability distributionX1 toX2 as: H (X2future|X2past)−H (X2future|X2past, X1past).

X2future and X2past represent the X2 probability distributions of future and past states,

respectively, and H is the entropy of the given distribution. nTE from X1 to X2 is then

defined as: TEX1→X2−<TEX1shuffled→X2>

H(X2future|X2past)
. nTE removes bias from the estimate of transfer

entropy by subtracting the average transfer entropy from X1 to X2 using a shuffled

version of X1 denoted < TEX1shuffled→X2 >, over several shuffles. It then divides the

estimate by the entropy of H(X2future|X2past), to get a value between 0 and 1. nTE

will be 0 when X1 transfers no information to X2, and will be 1 when X1 transfers

maximal information to X2. For calculating nTE, we shuffled each presynaptic MUA

vector 30 times. For more information on calculating nTE, see Neymotin et al., 2011
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(Neymotin et al., 2011a).

For each network trained on a particular target, we calculated a per-joint bias-score,

calculated as the difference between the sums of incoming excitatory weights to flexion

and extension motor units. This bias measure was normalized to the range of -1 to 1,

with -1 and 1 corresponding to extension and flexion biases, respectively.

3 Results

This study involved over 2000 15 s simulations of trained networks, using five dif-

ferent random wirings, five different input streams, five different targets, and sixteen

initial arm positions, as well as 400,000 15 s simulations run during training (five ran-

dom wirings, five input streams, five targets, sixteen initial arm positions, two hundred

reaches from each position). The network learned to reach a two degree-of-freedom

virtual arm from starting positions arrayed in a restricted subspace chosen around an

oval (large set of θs with restricted r in polar coordinates). This choice provided curved

solution trajectories, thereby avoiding the complex co-contractions of muscles associ-

ated with linear movements. Targets were set to test both extrema and intermediate

positions. Simulations were run on Linux on a 2.27 GHz quad-core Intel XEON CPU.

A 15-s simulation ran in 15 – 25 seconds, depending on the simulation type.

Learning alters network dynamics

Prior to training, firing rates of units in the motor (M) area (EM,ILM,IM) were low with

sparse firing produced by the stochastic inputs into the motor area (Fig. 3A; Table 4).
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This stochastic input was the source of motor babble, necessary to provide the varia-

tion that underlay motor learning. Before training, low variability of arm position kept

proprioceptive sensory (P) cells at nearly constant low spiking rates (Fig. 3A). Due to

strong fixed projections from P to higher-order sensory (S) populations, these low rates

were able to maintain higher-order sensory cells at moderate levels of activity.

During training, plasticity was present at 3 sites: E→E recurrent connections in both

S and M areas; bidirectional in E→E connections between S and M areas; local E→I

connections within S and M areas. As in our prior simulations, E→I learning was pro-

vided in order to avoid the runaway gain sometimes seen with excitatory loop learning,

even in the presence of LTD (Neymotin et al., 2011b). Excitatory weight gains between

the different populations tended to increase 3-fold: ES→ES: 3.2×; ES→EM: 3.1×;

EM→EM: 3.1×. However, synaptic weights did not saturate, remaining at intermedi-

ate values due to LTP and LTD co-occurring. By contrast, E→I projections increased

only∼30%. The result of the overall increased excitation was an increase in firing rates

in most cell types (Table 4). However, ES rates were almost unchanged, although the

inputs from P, which carried positional information, were now being used for control of

reaching the arm to target (see below).

Synchrony between cells within the ES population was evident at baseline (vertical

stripes in Fig. 3A), with normalized population coefficient of variation (CVp (Tiesinga

and Sejnowski, 2004)) showing non-zero synchrony, beyond independent Poisson pro-

cess coincidence levels (0 on the CVp scale of 0–1). Learning produced a significant

increase in synchrony in several of the populations (Fig. 4A). Increase in synchrony

was most evident in the M area, with significant increase in some S cell groups as well
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Figure 3: Raster plot of network spiking. (A) naive network (B) network after train-

ing. Gray (black) dots are spikes in inhibitory (excitatory) cells; ES,IS,ILS,EM,IM,ILM

(E excitatory; I inhibitory fast-spiking; IL inhibitory low-threshold spiking interneu-

rons; S higher-order sensory; M motor; Psh proprioceptive sensory shoulder (gray); Pel

proprioceptive sensory elbow (black) ).
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Table 4: Firing rates.

Condition P ES IS ILS EM IM ILM

Naive 0.98 3.36 5.60 3.36 0.17 0.53 0.41

Trained 1.01 3.37 8.42 4.87 1.74 4.32 2.45

Average firing rates (Hz) for the different cell populations before (Naive) and after

training.

(Fig. 3B; Fig. 4A). This demonstrated the development of temporal structure manifested

as synchrony, a correlate of the dynamical structure required to perform the task.

Normalized transfer entropy (nTE) between multiunit activity vectors (MUAs) demon-

strated increased information flow between populations (Fig. 4B; Fig. 5). Although

P→ES weights were fixed, there was a significant increase in nTE across these popula-

tions (0.0537 to 0.0625; SEMs ≤ 1%). This change demonstrated that network reorga-

nization, due to changes in other projections onto the S area, allowed alteration of ES

activity so as to better follow incoming proprioceptive information and improve perfor-

mance. The large increase in nTE in the main feed-forward pathway from ES→EM

(0.0247 to 0.1752) reflected the presence of structure in proprioceptive information

which provided the ES populations the ability to select particular EM units to activate

for the signaled movement. Increase in local-connectivity nTE from E→I within each

region was consistent with tuning of network inhibition to suppress cells that would in-

terfere with performance. This change suggested emergence of lateral inhibitory feed-

back influences (the equivalent of a geometrical inhibitory surround). The projection

from EM→P cells closed the loop. Increased nTE after learning (0.0008 to 0.0124)
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Figure 4: Analysis across N=2400 simulations with different randomizations, tar-

gets, starting positions. (A) Average population synchrony (CVp). (SEMs not visible)

Asterisks: significant increases; 2-sided t-test, p < 0.01. (B) Average nTE. (SEMs not

visible). Asterisks, significant increases; 2-sided t-test, p < 0.01. (C) Successes (aver-

age hits ± SEM; all differences significant). (D) Angular hit scores (average ± SEM;

all differences significant; sh shoulder; el elbow).
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demonstrated that EM movement-related activity was then predictive of future proprio-

ceptive states. This shift suggested how such a signal could also be utilized as efference

copy.

Trained networks perform reaching

Individual networks were each trained to navigate toward a particular location (Fig. 6).

Prior to training, the arm’s end-point would move only slightly from its initial starting

position (Fig. 6 gray traces). After training, with learning off, the network was able to

move the arm from arbitrary starting positions to the trained target (Fig. 6, black traces).

Generally, the network moved the arm successfully to its target in a near-optimal tra-

jectory. The ongoing noise in the system tended to reduce the smoothness of the mo-

tion and often caused the arm to deviate slightly from the target, once reached. Arm

movements were successfully made to targets from one extreme to the other (extreme

extension to extreme flexion in Fig. 6A and the reverse in Fig. 6B). A single network

learned a single target but could reach this target from any starting point at either side

of the target. In Fig. 6C, the network moved the arm from maximum flexion towards

the intermediately positioned target. The arm did not overshoot, demonstrating that the

network was able to keep track of the endpoint position to determine which direction

to move in. In Fig. 6D, the same network directed the arm towards the target from an

initial position of maximum extension. Here, a slight overshoot was seen, but the arm

immediately moved back towards the target afterwards.

Across targets, training significantly improved performance compared to the naive

networks with substantial variability, ranging from 0.43 to 0.97 success for trained net-
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(T4); (C,D) intermediate target (T3) approached from opposite directions.
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works and 0.15 to 0.24 for naive networks (Fig. 4C). Success was calculated for naive

and trained networks from identical initial conditions (starting position and random in-

puts), where for each of the N=2400 trials, a score of 1.0 indicated the hand had, during

some time in the simulation, reached within a Cartesian distance of 1.0 from the target,

and a score of 0.0 indicated this was not achieved. Networks were more readily trained

for some targets, with maximum flexion being the easiest to reach and maximum ex-

tension being the most difficult. Training significantly improved performance for all

targets (p < 1e-9, two-tailed t-test; Fig. 4C).

Trained networks reduced error (approached the target) over time (Fig. 7). The

panels here correspond to those in Fig. 6. In some cases, the initial movement of the

trained network increased error; because hand location is constrained by rotation at the

two joints provided, it must in some cases initially move away from the target in order

to ultimately reach it. In these cases, movement begins to reduce error, after the arm

passes through the vertical axis at about 5 s (e.g., sharp drop of error in Fig. 7A). By

contrast, when the target was centered, the error did not show this increase (Fig. 7C,D).

In these cases, the arm oscillated more at the target, lacking the externally imposed

constraint of the extremum as a counterbalance to attempted movement.

Once the arm reached the target, error remained relatively low, with small oscilla-

tions caused by the ongoing noise/babble. Overall, trained networks all showed sub-

stantially greater reduction in overall error as a function of time. Pearson correlation

between error and time values were significant (p < 0.05) and negative for the trained

networks (average -0.31 ± 0.01) and showed significant difference (p < 0.05, two-

tailed t-test) from the naive networks. Performance for individual targets varied, but all
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Figure 7: Cartesian error vs. time performance on four desired trajectories. The

panels correspond to the trajectories over the 15 s simulations shown in the same Fig. 6

panels.

trained networks showed a trend towards decreasing error over time, as expected from

motion of the arm from its starting position towards the target.

We examined trajectories of joint angles over time in individual reach trials (Fig. 8

and Fig. 4D). Trained networks were typically able to stabilize both joint positions

within 10 degrees of target locations. After training and across targets, this occurred

73% and 68% of the time for shoulder and elbow angles, respectively, compared to

only 19% and 24% for the naive networks (each of the N=2400 scores used for calcu-
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lating means in Fig. 4D was set to 1.0 when, at some time during the simulation, the

joint angle fell within 10 degrees of its target, and set to 0.0 when this did not occur).

Depending on target, the accuracy of trained network performance ranged from 50% to

100% (Fig. 4D).

Fig. 8A,B correspond to the reaches depicted in Fig. 6C,D. These reaches were ac-

complished by a single trained network, with the arm beginning at opposite sides of the

target. In Fig. 8A, the arm begins at maximum flexion. In this case, the majority of the

reach is accomplished via rotation about the shoulder joint. Fig. 8B shows movement to

the intermediate target from maximum extension. Here, the majority of the movement

is accomplished via rotation about the elbow joint. The network only utilizes minimal

shoulder movements to bring the arm close to the target. These examples demonstrate

that a single trained network can dynamically reconfigure which joint to utilize for a

reach, depending on currently available proprioceptive information.

We evaluated reach performance as a function of training epoch (Fig. 9) for the

three targets shown in Fig. 6. Overall, training quickly reduced error below that of the

naive networks. However, there was considerable variability in learning performance,

depending on the target. The maximum flexion target showed fast learning, with error

dropping close to zero after the first training epoch (Fig. 9A). This is consistent with

best overall performance (Fig. 4C; T5). The error for the maximum extension target

tended to oscillate with high deviations, also consistent with the lower performance

of reach movements towards the maximally extended target (Fig. 4C; T4). The inter-

mediate target showed intermediate performance, with lower amplitude oscillations in

error. The oscillations in error were partially due to optimization of reach movements
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Figure 8: Shoulder and elbow joint angle performance for two desired trajectories

to same target. (A,B) show the same trajectories as in Fig. 6C,D, both targeting T3.
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second reach trial as controlled by a trained (solid lines) network and naive (dotted

lines) network to a particular target. Horizontal solid lines indicate the target angles in

degrees (shoulder target at zero degrees). Thin horizontal gray lines indicate minimum

and maximum angles.
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from specific starting positions, which could detrimentally impact reach performance

from other starting positions. In addition, the babble noise was unmodulated as training

progressed, which could lead to partial interference in learning.

By running a network for 15 s with both learning and muscle motions turned off

and analyzing the direction that the EM units would have caused the arm to move in

from a grid of 256 starting positions, we were able to extract motor command maps

for four different cases of networks attempting to reach for a particular target (Fig. 10).

Fig. 10A shows an untrained network trying to reach for the most-flexed target (T5); the

motor commands at all of the starting positions are essentially insignificant, which is

typical for all of the naive networks. After training, the vectors tended to point towards

the target (Fig. 10B-D). Fig. 10B shows a trained network reaching for, again, T5. Most

of the vectors are colored red, representing directional preferences that point towards

the target. However, the gray vectors in the bottom right quadrant of Fig. 10B show

movement preferences that actually increase error, yet are nonetheless required for arm

movement, based on rotational constraints at the joints. During training, the network

would be punished for following these trajectories from these points, yet the overall

training permits these movement preferences to be learned. Because the target is at

extreme flexion, the overall tendency of the learning is to reinforce flexion and suppress

extension. This permits global learning that is contrary to local cues. Similarly, Fig. 10C

shows a motor vector field pattern consistent with reinforced extension (T4).

With the target at an intermediate position (Fig. 10D; T3), the vectors are not as

clearly oriented and are of reduced magnitude. The reduced magnitude promoted more

conservative movements, advantageous because positioning the arm over an interme-
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Figure 9: Average minimum Cartesian error (across 16 starting positions) as a

function of training epoch. (A), (B), (C) correspond to the average (over all starting

positions) performance on the targets used in Fig. 6A (T5), Fig. 6B (T4), and Fig. 6C,D

(T3), respectively. Performance at epoch 0 is the performance after the first training

session.
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Figure 10: Movement command vectors (15 s of simulation from grid of 256 start-

ing positions). Movement vectors are drawn from green to blue. Red vectors point

toward target (decreasing Cartesian hand-to-target error); gray away (increasing error).

Magnitude of each vector is scaled by 2X. (A) Movement commands generated by a

naive network have no directional selectivity. (B) Maximum flexion and (C) maximum

extension vectors tend to point towards the target. (D) Motor commands for interme-

diate target show directional selectivity towards the target from opposite directions, but

have smaller magnitudes.
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diate target required balance: too much extension or flexion results in over- or under-

shooting the target. For the trained networks, average angular error reductions about

each joint per movement command across targets and starting positions were -0.29o per

move for shoulder and -0.15o for elbow (SEM ≤0.01o), demonstrating that the network

tended to generate movements that would reduce error. The larger reduction in shoulder

error is due to its larger role in positioning the end-point of the arm, since the elbow

position depends on the upper-arm position.

Flexion bias scores, representing difference between extension vs. flexion weights

at a joint from -1 to 1, showed the expected flexion bias at both joints (average ± SEM:

0.22 ± 0.01 and 0.27 ± 0.01 for shoulder and elbow, respectively) in the case of the

maximum flexion target. However, the maximum extension target produced networks

with flexion bias at the elbow (0.03 ± 0.02), with only slight extension bias at the

shoulder joint (-0.12± 0.03). This corresponded to the lower hit score for the maximum

extension target compared to maximum flexion target. The intermediate targets had

extension bias at the shoulder (T1: -0.14 ± 0.02; T2: -0.01 ± 0.01; T3: -0.12 ± 0.01),

with primarily flexion bias at the elbow (T1: 0.03± 0.02; T2: -0.02± 0.01; T3: 0.05±

0.01). Balancing bias at the two joints appeared to be a strategy to allow movement to

occur readily in opposing directions so as to allow for target acquisition from different

initial points.
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4 Discussion

The results in this paper demonstrate the flexibility of the network architecture and

learning algorithm developed in (Chadderdon et al., 2012). Here we have extended the

target tracking task to the more challenging problem of controlling two independent

joints to perform the reach. ES cells contain random mappings from the propriocep-

tive P cells, which leads to individual ES cells forming conjunctive representations of

configurations of both joints. The global reinforcement mechanism induces plasticity

which shapes the EM cell response to the current limb configuration represented in ES.

The target is effectively represented implicitly (see below) by the visual set point which

the reinforcement algorithm uses to determine whether the network is rewarded or pun-

ished for the motor commands it issues in response to current limb configuration. Such

a system effectively forms attractors for the target arm configuration by shaping the im-

mediate response to particular points the arm is at in the trajectory. Fig. 10 graphically

shows the type of motor command map that implements these attractors. These attrac-

tors may function either when learning is turned off (as is done during testing in this

paper) or left on, though continued learning may add some interference to the learned

attractor. As a consequence of the attractor structure, only one target may be learned by

the system at a time.

Additionally, although we did not actively test it under this task, we have previously

demonstrated that this model is capable of unlearning old attractors and relearning new

ones based on a shift of the reinforcement schedule (Chadderdon et al., 2012): a feature

that adds great adaptive flexibility to the simulated agent’s reaction to its environment.
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Punishment “stamps out” no-longer relevant attractors and babbling in conjunction with

reward is able to “stamp in” newer, desired attractors. Although we turn off learning

before we test the performance of the model in this paper (in order to control for the

possibility of new learning affecting performance), there is biologically plausibility in

always leaving the learning algorithm on at some level (Sober and Brainard, 2009). This

is easily accomplished, and in the future, we intend to adapt the level of babbling motor

noise according to the degree to which the agent is being rewarded (more reward, less

injected noise). When this is done, learning should become even more efficacious and

leaving learning on less detrimental than is presently evidenced in Fig. 9.

Learning produced alterations in network dynamics, including enhanced neuronal

synchrony and enhanced information flow between neuronal populations. After learn-

ing, networks retained behaviorally-relevant memories and utilized proprioceptive in-

formation to perform reaches to targets from multiple starting positions. Trained net-

works were able to dynamically control which degree-of-freedom (elbow vs. shoulder)

to utilize to reach a target, depending on current arm position. Learning-dependent

dynamical reorganization was evident in sensory and motor populations, where synap-

tic weight patterning was produced through a balance of convergent excitatory weights

onto motor populations projecting to extensors and flexors.

We make a number of specific, testable predictions from the model.

1. Balanced learning (changes in both E→E and E→I weights) is needed to produce

selection of correct motor units while suppressing activation of incorrect motor

units via selective inhibition. Testable using selective pharmacological blockade
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or optogenetics.

2. Learning enhances synchrony in neuronal populations and enhances behaviorally-

relevant information flow across neuronal populations. Testable with electrophys-

iological recording techniques (multiple areas and/or single units) and nTE. How-

ever, information flow (measured by nTE) can change across 2 populations due

to dynamical factors in the absence of learning, or even direct synaptic connec-

tions, between these populations (e.g., EM→P in Fig. 4). Thus, although nTEcan

sometimes provide evidence of learning (Lungarella and Sporns, 2006), it must

be interpreted cautiously.

3. Enhanced sensory processing works in tandem with motor alterations to improve

task-relevant motor performance. Testable in vivo by erasing memories from

sensory areas (Pastalkova et al., 2006; Von Kraus et al., 2010). Additionally,

motor cortex erasure could be used to demonstrate that re-learning is accelerated

in the presence of the prior sensory learning. These predictions could also be

tested further in our model.

4. Learning to a motion extremum is faster than learning to intermediate positions

since motion limitations can be used, eliminating the need for learning balance

across antagonist muscles (preliminary experiments confirm, P.Y. Chhatbar, per-

sonal communication). More generally, the relative ease of a particular movement

in vivo depends on the amount of sensory information required to complete the

movement. Testable by kinesiology.
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Environmentally-constrained structure and function

Functional connectomics seeks to explain dynamics and neural function as emergent

from detailed neuronal circuit connectivity (Sporns et al., 2005; Shepherd, 2004; Reid,

2012). Circuit changes have been correlated with brain diseases, such as epilepsy

(Dyhrfjeld-Johnsen et al., 2007; Lytton, 2008) and autism (Qiu et al., 2011). Our past

modeling work has confirmed the importance of microcircuit structure on neural func-

tion, demonstrating that alterations in connectivity change both dynamics and informa-

tion transmission in neuronal networks (Neymotin et al., 2011a,d,c,b).

The embedding of brains, and by extension neuronal networks, in a physical (or

simulated) world has been hypothesized to be an essential part of learning, as seen as

the evolution of network dynamics (Almassy et al., 1998; Edelman, 2006; Krichmar and

Edelman, 2005; Lungarella and Sporns, 2006; Webb, 2000). This theory maintains that

the environment and brain influence each other as learning selects neuronal dynamics

(selective hypothesis) (Edelman, 1987). In the present work, learning depended on the

interaction with the rudimentary simulated environment: the virtual arm and target.

This embodiment can now be used to make predictions for learning-related changes

occurring during the perception-action-reward-cycle (Mahmoudi and Sanchez, 2011).

Embedding also provides a step towards using simulation to assess functional im-

portance of various dynamical measures commonly utilized on in vivo electrophysio-

logical data. Here, we found that synchrony and nTE were both enhanced after learning.

These measures have been suggested as a means for brains to coordinate activity and

process information (Engel et al., 1991; Lungarella and Sporns, 2006; Von der Mals-
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burg and Schneider, 1986; Neymotin et al., 2011a; Uhlhaas and Singer, 2006). Our

biomimetic brain model learned a function that can then be correlated with specific

aspects of ensemble dynamics. The functional connectome can thus be dissected by

looking at two steps: 1. the emergence of dynamics from connectivity (the dynamic

connectome); 2. the relation of function to aspects of dynamics (the functionome: the

set of functions a network can perform as constrained by its dynamics and dynamical

embedding within the environment).

Target selection

Representation of both visual and somatosensory state information, including target

information, is believed to be located in posterior parietal areas, and this information

propagates to premotor and motor cortex (Shadmehr and Krakauer, 2008). These repre-

sentations may be modulated via processes that select task-relevant information. Recent

experiments have shown that premotor cortex activity is predictive of changes of mind

that result in switching between targets mid-movement (Afshar et al., 2011).

Our present model selects the target implicitly via the Cartesian visual reference

point that the reinforcement learning algorithm uses to determine whether the hand is

moving closer (reward condition) or further away (punishment condition) from the de-

sired location. A part of the brain upstream of the dopamine cells signaling error might

perform the error calculation and cue the correct valence of reinforcement (internal rein-

forcement source), or the environment itself might provide actual rewards or punishers

based on the the agent’s choice (external source). In either case, reinforcement schedule

can implicitly select the present target (Chadderdon et al., 2012). In future versions of
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the model, however, we may utilize a premotor cortex representation in order to allow

mappings to be learned which map the conjunction of cued target representation and

limb state to directive motor commands. Such a representation would presumably be

cued by dorsal visual stream information propagating through posterior parietal cortex

when the agent views a target in a particular location in their visual field. This would

also allow the model to move beyond the current limitation of being only able to retain

a mapping to a single target at a given time.

Experiments have demonstrated that neuronal networks dynamically select between

competing streams of information, depending on behavioral relevance (Kelemen and

Fenton, 2010). This information selection is modulated via attention-like processes

affecting neuronal dynamics and behavioral performance (Fenton et al., 2010). One

dynamical mechanism implicated in attentional function is modulation of the level of

oscillatory amplitude in the mu and alpha bands, elicited via top-down projections from

higher- to lower-order brain areas (Mo et al., 2011; Jones et al., 2010). We previously

developed models of neocortex showing altered dynamics with attentional modulation

(Neymotin et al., 2011d). In these models, supragranular layers of neocortex received

strengthened input, as a stand-in for higher-order brain area activation. This had the

effect of increasing 8 – 12 Hz oscillation amplitude, while maintaining the peak os-

cillatory frequency location. We hypothesize that target information projecting from

premotor- into supragranular layers of motor-cortex causes attentional modulation, al-

lowing motor cortex to control movements to targets.
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Learning molecules

A major challenge in neuroscience will be to bridge the gap in understanding how ac-

tivity at disparate scales is linked (De Schutter, 2008; Lytton, 2008; Le Novère, 2007).

A phenomenon such as learning has important dynamics at different scales of gran-

ularity ranging from molecular up to network and behavioral levels. In the present

work, we utilized a phenomenological learning rule that had a spike-timing depen-

dence. This rule operated at the synaptic scale and was further modulated by more

global neuromodulatory-like reinforcement signals. These global reinforcement sig-

nals bridged the gap from synaptic and molecular signalling to the behavioral level and

were effective in eliciting desired behavioral responses from the sensorimotor network

via the synaptic learning process.

Dopamine, a key signaling molecule involved in modulating learning, bridges the

gap between behavioral, cognitive, and molecular levels (Evans et al., 2012). There

is evidence that increased (decreased) dopamine concentration leads to synaptic LTP

(LTD) via action of D1-family receptors (Reynolds and Wickens, 2002; Shen et al.,

2008). Our model provides a link between global reinforcement, mediated via dopamine

signals, and sensorimotor learning. In future work, we will explore a more detailed

model of the dopaminergic reward pathway, with potential implications for modeling

disorders such as schizophrenia and Parkinson’s disease (Frank et al., 2004; Cools,

2006; Frank and O’Reilly, 2006).
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