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Realistic single-neuron modeling

William W. Lytton and John C. Wathey

Realistic single-neuron modeling organizes and clarifies
physiological hypotheses. It extends the experimenter’s intustion
and leads to testable predictions. A powerful new algorithm,
several user-friendly software packages and the advent of fast,
cheap computers have together made this tool accessible to a
broad range of neurobiologists. Equally dramatic advances
in experimental findings have increased the level of
sophistication of the models. Here we provide a guide to single-
neuron modeling, illustrate its power with a few examples
and speculate on possible future directions for this rapidly
growing field.
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ALL NEUROPHYSIOLOGISTS are modelers. They
may explain the bursting behavior of a neuron in
terms of voltage-sensitive calcium currents and a
calcium-activated potassium conductance. They may
conclude from a complex spike waveform that the
cell has excitable dendrites. They may choose to
voltage-clamp the cell body to study synaptic
currents. Behind each of their experimental designs
and interpretations of results lies an implicit
hypothesis, a model, of how the neuron works.
Here we describe a tool with which these mental
models can be transformed into precise and explicit
computer simulations. This transformation is in itself
a valuable exercise, because it requires a complete
list of the relevant biophysical parameters. Compiling
this list may immediately reveal important gaps in
knowledge. Of far greater value, however, is the
expansion of intuition that comes with running many
simulations over wide ranges of parameter values.
Realistic models at the single-neuron level are
primarily concerned with local changes in membrane
current and voltage, caused by such things as
synaptic input and voltage-sensitive conductances,
and with the propagation of these local changes over
spatially extensive dendrites and axons. With recent
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advances, physiologists can now use modeling
techniques previously accessible only to those with
mathematical expertise and large computers.

What follows is not a comprehensive review of the
subject but rather an overview for the uninitiated.
We begin with some intuitive explanations of the
biophysical processes being simulated and a guide
to the latest simulation software. We then describe
a few illustrative models, taken largely from our own
work, and conclude with speculations on the future
directions of this rapidly growing field.

A guide to realistic single-neuron models
Modeling membrane mechanisms

Biophysical processes that cause local changes in
membrane potential, such as synaptic activation and
voltage sensitive conductances, are most easily
modeled in a patch of membrane that is spatially
isopotential. This is an appropriate model for
preparations such as the space-clamped squid axon!
or neurons that lack dendrites.?2 Such models are
best understood in terms of a parallel conductance
circuit (Figure 1). The capacitor represents the
electrical capacitance of the membrane, the batteries
represent the reversal potentials of the various ionic
channels in the membrane and the resistors symbolize
the conductances of those channels. Those with
arrows through them can vary over time. Probably
the single most useful concept for understanding
these models is that the membrane potential is given
approximately by a weighted average of the various
reversal potentials where the weighting factors are
the corresponding ionic conductances. If one
conductance, say gn,, becomes much larger than all
the others, then the membrane potential will be
driven towards Ey,.

The time course of a synaptic conductance change
depends in a complex way on the rates of diffusion
and removal of neurotransmitter molecules in the
synaptic cleft and on the kinetics of the reactions
between transmitter and receptor molecules. Although
these processes have been modeled in great detail,*
most models at the single-neuron level ignore the
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Figure 1. Parallel conductance model of active
membrane with synapse. C,, = membrane conductance;
I = conductances of various channels; E = reversal poten-
tials of various channels; syn = synapse; L = nonspecific
leakage; K = potassium channel; Na = sodium channel.
(see text for explanation).

underlying complexity and use simple functions of
time to approximate synaptic conductance wave-
forms. Examples are the alpha function® and the
product of exponentials (J.M. Bekkers and C.F.
Stevens, personal communication). In a particularly
interesting case the synaptic conductance depends
on voltage as well as time.5

Most models of voltage-sensitive conductances
follow the formalism introduced by Hodgkin and
Huxley.! The essential concept is that of a
microscopic ‘gate’ which covers the ion channel and
makes all-or-none transitions between the open and
closed states:

a
closed = open

B

where the transition rates & and 8 are functions of
temperature and membrane potential. Their voltage
dependence underlies the voltage sensitivity of the
model conductance. The individual channels and
their gates are not explicitly simulated; rather the
model deals with a ‘gating variable’ that describes
the average behavior of a large population of gates
of a given channel type. The gating variable specifies
the fraction of gates in the open state at any instant
in time. There is no simple expression for the gating
variable; its value can only be approximated by
numerical integration of the differential equations
that arise from the underlying all-or-none transition
behavior and from the rate functions & and 8. A
detailed explanation of these differential equations
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Figure 2. Computer-generated drawing of a hippo-
campal CA1 pyramidal neuron. The cell was filled in vitro
with horseradish peroxidase and digitized from a whole-
mount of the slice (data courtesy D. Amaral). The axon
is the long process at lower left. The cell has four basal
dendrites (below the cell body) and one apical dendrite.
Together they comprise 93 branches totaling 14 mm in
length. Reproduced from ref 11, with permission.

and of the derivation of the rate functions from
voltage-clamp data are given in ref 7.

Modeling cable properties

A neuron with extensive dendrites (Figure 2) cannot
be adequately modeled as a spatially isopotential
patch of membrane. In such a cell a local change
in membrane potential propagates across the cell over
time. This propagation is described by a partial
differential equation known as the cable equation.?
It is mathematically identical to the diffusion
equation, and its behavior is perhaps most easily
understood by analogy to diffusion. Imagine a long
thin tube filled with water. At time zero a fixed
amount of a soluble dye is injected into the tube some-
where along its length. At that instant the concen-
tration of the dye is zero over most of the length of the
tube but is high near the injection site (Figure 3). The
diffusion equation states that the rate of change of
concentration of the dye over time is proportional to
the curvature of the concentration profile over distance.
The effect is that local bumps in the concentration
profile tend to smooth out over time. If the tube in
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our example is itself slightly permeable to the dye,
then the dye will not only diffuse down the length
of the tube but some of it will also diffuse across the
walls of the tube and be lost to the surrounding
medium. This case is directly analogous to the
spatially extensive neuron: the tube is the neuronal
membrane, the dye is electric current and its local
concentration is the membrane potential.

For most realistic models, numerical integration
must be used to approximate the solution to the cable
equation. Because it is a partial differential equation
in both space and time, its numerical solution
requires not only dividing time into discrete steps
but also dividing the neuron into discrete spatial
increments (commonly called compartments or
segments). Each of these is considered isopotential
and may have associated with it various membrane
mechanisms (e.g. voltage-sensitive conductances)
that can affect the membrane potential at that
location. Such a model therefore requires the
numerical integration of a large system of coupled
differential equations: the cable equation and the
various ordinary differential equations describing
local membrane mechanisms in the compartments.
These equations do not yield easily to numerical
integration. When conventional methods are used,
the solutions become unstable with large time steps
or with small compartment sizes,? but a powerful
new algorithm!? has solved the stability problem for
models of highly branched neurons, a breakthrough
that has opened up a new realm of neuronal
modeling. Problems that once required hours or days
of computer time can now be solved in seconds.!1-13

Software

There are several important criteria for judging
neuronal simulation software. The most important
is the reliability of the underlying design. Since the

%
;
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A

main task of these programs is numerical integration,
a critical test of their correctness is that their results
converge to analytical solutions in those simplified
cases for which analytical solutions are known. A
neuronal simulator must also be flexible. Most
programs achieve this through the use of a high-level
interpreted language that controls the simulation.
The best are distributed with sample interpreter
scripts that show by example how their features are
to be used. Simulations of morphologically realistic
neurons require a sophisticated algorithm!? and some
means of reading digitized morphological data. A
simulator should also display results graphically in
a way that simplifies interpretation.

Several software packages meet most or all of these
criteria. We use the programs of Michael Hines, 16
the latest of which is NEURON. A unique
and powerful feature of NEURON is its model
description language, a high-level language with
which sophisticated local membrane mechanisms
can easily be created. The Genesis simulator!’ is
relatively easy to use and features a sophisticated
graphical display. Other popular packages include
Nemosys,!5 SPICE!® and Saber.!® Most of these
run only on workstations but there is a PC version

of NEURON.

Examples
Passive cable properties

A criticism often raised against realistic neuronal
modeling is that many of the requisite parameters
are unknown, so modeling efforts are premature. We
would argue that the goal of modeling is not to
confirm the completeness of physiological knowledge
but instead to contribute to that knowledge by
identifying gaps within it and by aiding in the
interpretation of data.

Figure 3. Diffusion along a sealed tube. (A) A large concentration difference between the
center and its surroundings (high spatial curvature) leads to a rapid drop in concentration
at the center (arrow). (B) A more gentle initial curvature leads to a slower drop in concentration.
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A good example is the controversy over one of the
fundamental parameters of passive cable models, the
specific membrane resistance R,;. It is not directly
measurable but must be inferred, using a cable
model, from measurements of cellular input
resistance. The problem is that these measurements
may differ by a factor of 10 depending on whether
impaling or tight-seal electrodes are used.20:2! This
uncertainty in R, has drastic effects on the behavior
of single-neuron models and on the interpretation
of experimental results.?? Figure 4 shows a simple
example, the effect of R, on steady-state depolari-
zation across a dendritic tree. The discrepancy in
measurements of input resistance has been attributed
to current leak around the impaling electrode,
cellular dialysis by the tight-seal electrode, damage
to distal dendrites in some preparations?? and
variation in the age of the animals in others
(J.F. Storm, personal communication). A recent
modeling study has shown that differences in back-
ground synaptic activity can also have large effects
on input resistance.!* Spruston and Johnston%*
recently measured input resistances between the two
extremes using a perforated-patch technique, which

Membrane potential (mV)

avoids some of the artifacts of impalement and
conventional tight-seal recording. They successfully
used cable models, both analytic and numerical, to
interpret discrepancies between their results and
those obtained with impaling electrodes. Their
models of leakage around the impaling electrode
quantitatively predicted the lower input resistance
and time constants measured with that technique.

Simple models can often aid the interpretation of
experimental results and can be readily performed
by the experimenter. In a study of synaptic
connectivity in an isolated leech ganglion,?® a
dendrite of an identified, Lucifer-yellow-filled neuron
was ablated by irradiation. The ablation caused a
reduction in an inhibitory postsynaptic potential
(i.p.s.p.) from a particular inhibitory input, suggesting
that the lesioned dendrite was the location of the
input. The irradiation also, however, caused damage
to the cell body resulting in a large reduction in input
impedance, which would be expected to reduce the
size of postsynaptic potentials. Was the observed
reduction in the i.p.s.p. caused by the dendritic
ablation or by the general damage to the cell body?
A five-compartment passive model was used to assess

— R, = 15,600 Q-cm?
--=- R =227,000 Q-cm?

Il 1

400 600

Distance along apical dendrite (um)

Figure 4. Steady-state membrane potential responses to continuous current injection into
the cell body or various sites along the primary apical dendrite of the cell shown in Figure 2.
The entire cell was passive and the resting potential was — 70 mV. Each curve represents
a separate simulation run. The maximum of each curve indicates the location of the current
injection. Solid and dashed lines show results from simulations using membrane resistances
of 15,600 2 cm -2 and 227,000 @ cm 2, respectively. The corresponding input resistances
were 50 and 500 MQ, respectively. The amount of current was adjusted to compensate for
differences in input resistance and varied from 0.5 nA at the cell body to 0.063 nA at the
distal tip of the low-resistance cell. The corresponding range was 0.05 to 0.027 nA for the
high-resistance cell. Note the more rapid decay of potential with distance in the proximal
half of the dendrite, where the density of secondary dendritic branches is greatest. Reproduced

from ref 11, with permission.
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Figure 5. Changes in synaptic response do not always parallel changes in input impedance.
(Simulations of experimental results from ref 25.) (A) Injection of 0.5 nA of current produces
50% less hyperpolarization after changing the membrane resistance of the cell body. This
implies a 50 % reduction in input resistance as measured at the cell body. (B) The same change
in cell body membrane resistance reduces the effect of a distal inhibitory synaptic input by

only 25%.

the effect of the change in membrane resistance on
the i.p.s.p. size. The model was altered to match the
input impedance before and after irradiation and to
match the i.p.s.p. size in the control. Interestingly,
the change in membrane resistance had much less
effect on the i.p.s.p. than on an injected current
(Figure 5), because the 1.p.s.p. was itself so large that
it already enormously reduced membrane resistance,
making the reduction due to cell damage less
significant. The reduction in the i.p.s.p. seen in the
experiment therefore appeared to be a specific effect
of dendritic ablation.

Relating voltage- and current-clamp data

A model can be used to evaluate the artifacts intrinsic
to voltage-clamp studies: deficiencies in space clamp,
difficulties with rapidly sourcing or sinking currents,
variable temperature dependence and damage to
dissociated cells. Ideally a model derived from
voltage-clamp data should be able to reproduce the
behavior of the current-clamped neuron.

A modeling study of this sort has been used to
correlate voltage-clamp studies of the T-type calcium
channel in thalamic neurons with the low-threshold
spike that depends on it.26 There have been three
voltage-clamp studies of this channel in thalamic
cells;?7-2% although they are in overall agreement as
to the approximate range of activation of the channel,
the exact parameters vary considerably (Figure 6A).

A study using cell impalement?® produced a steep
steady-state activation (me) curve, whereas studies
using whole-cell patch produced shallower curves.
Our modeling revealed that a low-threshold calcium
spike could be more readily produced using the
steeper curve (Figure 6B). A low-threshold calcium
spike could be obtained using the shallower curve
(Figure 6C) if a large persistent sodium current was
used to offset the effect of a less steep activation of
the T current. The low-threshold calcium spike
produced with these parameters was far more
sensitive to the exact amount of hyperpolarization
employed to elicit it. Since both types of voltage-
clamp recording are subject to artifacts, this type of
modeling can provide a valuable clue for interpreting
the results from the two techniques.

Using the same approach, the effect of the drug
ethosuximide on the T channel was assessed. Our
modeling of the voltage-clamp traces from a recent
study of the action of ethosuximide on isolated
thalamic cells showed that the effect of the drug was
to change the voltage dependence of the T channel
activation curve rather than to simply reduce the
overall conductance.3? Further modeling of current-
clamp data suggested that this alteration in channel
behavior would be able to prevent or reduce
low-threshold calcium spikes and thereby alter
the behavior of the cell in the thalamic cir-
cuit, as had been previously suggested. As etho-
suximide is effective in treating absence epi-
lepsy, a particular type of epilepsy dependent on
thalamocortical interaction3!, this result supports
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Figure 6. Voltage clamp results differ among studies
using different techniques. (A) Steady-state activation
(mo) curves for the T calcium channel as reported in
three voltage-clamg studies: solid line;?® short dashes;28
and long dashes.?’” All show a threshold at about
— 70 mV but they have different slopes. (B) Low-threshold
calcium spike obtained after hyperpolarization in a
simulation using the solid-line mg, curve in (A). This
spike is robust: it occurs following various degrees of hyper-
polarization. (C). Less robust low-threshold calcium spike
obtained after hyperpolarization in a simulation using the
middle mq, curve in (A). It is difficult to find parameters
that give spiking behavior and the spike occurs only for
a narrow range of hyperpolarization. (W. Lytton,
unpublished simulations).

the hypothesis that the drug might exert its anti-
epileptic activity through its action on the T
channel.3? Because models are easier to manipulate
than experimental preparations, models could
potentially be used to predict not only the effect of
a particular channel modification on cell firing
patterns but also channel modifications that might
abolish a pathological firing pattern.

Changes in dendritic excitability

Our last example concerns an enigmatic aspect of
synaptic plasticity in the hippocampus. Hippocampal
pyramidal neurons show a robust form of synaptic

plasticity termed long-term potentiation (LTP), in
which a brief, high-frequency stimulus to the afferent
fibers causes an enhanced response to subsequent
single test stimuli. This enhancement is usually
measured as increases in the amplitude (or initial
slope) of the excitatory postsynaptic potential (e.p.s.p.)
and in the probability of firing of the postsynaptic
neurons (evidenced by an increase in the size of the
extracellular population spike). An important charac-
teristic of LTP in the CA1 region of the hippocampus
is that it is specific to those synapses that received
the tetanic (high frequency) stimulation.32:33

One puzzling aspect of the LTP story has,
however, received relatively little attention. In many
LTP experiments there is a greater increase in the
probability of firing than can be accounted for by
the potentiation of the e.p.s.p. This is most easily
seen in the curve relating population spike size to
e.p.s.p. slope. Typically the effect of LTP is to shift
this curve to the left, which indicates that an e.p.s.p.
of a given slope is more likely to fire the cell after
LTP than before (Figure 7). The phenomenon is also
evident in some intracellular recordings3* in which
the probability of firing increases after the tetanus,
although the size and shape of the e.p.s.p. does not
change (Figure 8A,B). This component of LTP is
called potentiation of e.p.s.p.-to-spike coupling, or
simply E-S potentiation.33.35

Popuiation Spike Amplitude (mV)

0 0.5 1.0
EPSP Slope (mV/ms)

Figure 7. High-frequency stimulation causes a leftward
shift in the plot of population spike size versus e.p.s.p.
slope. One possible explanation is that the conditioning
stimulus causes a long-term increase in dendritic excita-
bility. Unpublished data courtesy L. Chavez-Noriega and
T. Bliss.
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Figure 8. (A),(B). Intracellular evidence for E-S potentiation. (A)i. A test shock to afferent fibers
elicits a subthreshold response in an intradendritic recording from a hippocampal CA1
pyramidal cell. In (B)i, following tetanization of this synaptic input, the response to the same
test shock is suprathreshold. (A)ii and (B)ii shows that the e.p.s.p. is not significantly altered
by the tetanus. From ref 11 (after ref 34), reproduced with permission. (C),(D) Simulation of
an intradendritic recording showing E-S potentiation. (C)i. A test shock which excites 18
excitatory and 14 inhibitory synaptic contacts on the apical dendrite produces a subthreshold
e.p.s.p. (D)i. Testing the assumption that tetanic stimulation increases dendritic excitability
by adding voltage-sensitive calcium conductance (hot spots) near the tetanized synaptic
contacts. This results in E-S potentiation: the test stimulus has become suprathreshold. (C)ii
and (D)ii The response embedded in a 0.3 nA hyperpolarizing current pulse shows that the
e.p.s.p. is unchanged. Reproduced from ref 11, with permission.

We used a model to investigate some of the
consequences of the hypothesis that E-S potentiation
is caused by an increase in postsynaptic excitability.!!
The cellular morphology used in these simulations
was identical to that in Figure 2. The axon and soma
were excitable but the dendrites were initially passive.
We assumed that the effect of the tetanus was to
unmask voltage-sensitive calcium channels near the
sites of the tetanized synaptic contacts. In the model
this involved adding a ‘hot spot’ of voltage-sensitive

calcium permeability to those dendritic compart-
ments receiving excitatory synaptic input. This
local change in dendritic excitability mimicked the
intracellular manifestations of E-S potentiation
(Figure 8C,D).

The more important issue, however, is the effect
of this change in excitability on the specificity of
LTP. To quantify the specificity of the simulated E-S
potentiation, we ran a series of simulations in which
the hot spots were colocalized with a subset (40/80)
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of synaptic contacts, denoted tetanized. We then
compared the effects of the hot spots on these and
on the remaining (untetanized) synapses. Both
groups of synapses were scattered randomly over
restricted regions of the dendrites. The strength of
the hot spots (which can be thought of as the number
of calcium channels they comprise) was in every case
adjusted to reduce the firing threshold of the cell by
10% through the tetanized contacts. If the hot spots
had a negligible effect on the threshold for firing the
cell through the untetanized contacts, then the
simulated E-S potentiation was specific to the
tetanized synapses. If both groups of synapses were
affected, then the E-S potentiation was nonspecific.

We defined specificity as the difference between
the changes in threshold at the two synaptic groups
divided by the sum of these quantities. With this
definition, specificity is 1.0 if the untetanized
synapses are unaffected by the hot spots; it is 0 if
the two groups of synapses are equally affected and
it approaches — 1.0 if the hot spots have a greater
effect on the untetanized than on the tetanized
synapses. Much to our surprise, we found that the
specificity could lie anywhere along this spectrum,
depending on the spatial distribution of the synapses
(Figure 9).

We ran many simulations with different patterns
of synaptic input and, eventually, some trends
emerged. Specificity tends to be high if the untetanized
contacts are, on average, closer to the soma than the
tetanized contacts (Figure 9A). This tendency persists
even if the hot spots are not colocalized with the
tetanized contacts but are instead confined to the
most proximal 80 gm of the five primary dendrites
(Figure 9B). The highest specificities are obtained
when the two groups of synapses are completely
segregated to different primary dendrites (Figure 9C)
but, even in this case, specificity approaches 0 if the
untetanized contacts are sufficiently far from the cell
body. We can understand these results by noting that
it is difficult to fire the cell using synapses that are
far from the spike initiating zone. The threshold
synaptic strength required to fire the cell through
distant inputs is therefore disproportionately sensitive
to changes in dendritic excitability.

These results show that E-S potentiation by an
increase in dendritic excitability can appear to be
highly specific and cannot therefore be ruled out
solely by the experimental observation that LTP is
synapse-specific in CA1 pyramidal cells. The model
also makes a prediction: if a significant component
of E-S potentiation occurs by this mechanism, then
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Figure 9. Simulations to test the specificity of
E-S potentiation for different spatial distributions
of synaptic input. (A) Forty tetanized and forty
untetanized synaptic contacts were scattered at random
on the apical dendrite. ‘Hot spots’ of voltage-sensitive
Ca?* conductance were added to those compartments
receiving tetanized contacts, such that the threshold
for firing the cell through the tetanized input was
reduced by 10%. Specificity (vertical axis) is a
measure of the effect of these hot spots on the
untetanized input. Positive values indicate a greater
effect on the tetanized than on the untetanized
input, negative values the reverse; 0 indicates equal
effect on the two inputs. Distance index (horizontal
axis) is a measure of the relative distances of the
tetanized and untetanized inputs from the cell body,
as judged by their effectiveness at firing the cell.
Positive values indicate that the untetanized input
is closer than the tetanized input, negative values
the reverse; 0 indicates that the two inputs are equi-
distant from the cell body. E-S potentiation tends
to be specific if the untetanized input is closer to the
cell body than the tetanized input. (B) As (A), except
that the hot spots were added to the most proximal
80pum of the five primary dendrites, rather than
to the sites of the tetanized synaptic contacts. As
in (A), specificity and distance index appear to be
correlated. (C). As (A), except that the tetanized and
untetanized inputs are segregated to apical and
basal dendrites (see Figure 2) respectively. Hot spots
were co-localized with tetanized contacts. Here E-S
potentiation is highly specific over a wide range
of distance index values. (Reproduced from ref 11,
with permission).
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that component will appear nonspecific if the
untetanized synapses are sufficiently far from the
soma relative to the tetanized synapses.

In preliminary experiments of this kind
(S. Chattarji, unpublished data; see also ref 36)
tetanization of a proximal input to CAl neurons
causes potentiation of the population spikes elicited
through both the tetanized input and a distal
untetanized input, in agreement with the prediction.
Recently evidence of a nonspecific component of
LTP in CA1 neurons has also been reported (37)
but it cannot be seen if the tetanized and untetanized
inputs are segregated to basal and apical dendrites,
respectively, consistent with the simulation results
of Figure 9C.

This example illustrates several virtues of realistic
modeling. The simulations suggest a way to reconcile
seemingly contradictory experimental results (the
evidence for postsynaptic excitability changes and
the specificity of LTP). They reveal an important
determinant of specificity (the relative distances of
the two inputs from the soma). In so doing they
suggest an experiment by which the effects of
postsynaptic excitability changes might be better
isolated from the other effects of tetanization. The
model also has limitations. It ignores other possible
mechanisms for E-S potentiation3? and omits much
of the known physiological complexity of hippocampal
pyramidal cells.?83? The goal of the model was not,
however, to reproduce the complete behavior of the
neuron but was to give insight into some consequences
of changes in dendritic excitability. In the future
more complete models should provide better insight.

Future directions

In the near term we foresee a trend toward greater
detail and realism in the models. One promising and
largely unexplored direction is the modeling of
voltage-sensitive conductances using reaction schemes
and rate functions inferred from single-channel
recordings. In many models, realism is now limited
by the lack of data on the spatial distribution of
voltage-sensitive channels across the cell. Many of
these channels have now been characterized by
molecular biological techniques*® and histochemical
labeling is likely to play an increasingly important
role in estimating channel densities.*! Imaging of
dendritic current fluxes using ion-sensitive dyes will
also contribute to this effort.#2 We expect more
highly constrained experiments done with the needs

of modeling in mind. It might be possible, for
example, to estimate the spatial distribution of
dendritic Ca?* channels from whole-cell voltage-
clamp data taken in the presence of a known and
controllable spatial gradient of some channel blocker.
Although the inadequacy of the space clamp would
preclude any simple-minded interpretation of the
results, a detailed model based on physiological
and morphological data from the same neuron
might provide a meaningful answer. Some work
has already approached this level of sophistication.*3
Another promising direction is the modeling of
second-messenger systems that regulate ionic
conductances*** and are involved in some forms
of synaptic plasticity.

Future models may address more profound
questions concerning the computational roles of
dendritic trees and neuronal dynamics. Models
can already identify neurons that are likely to
be capable of extensive dendritic computation?’
and a few imaginative models have shown what
such computation might achieve.?248 The role
of neuronal dynamics will probably be most easily
understood in simplifying models that try to capture
the essence of the behavior using the smallest possible
number of state variables.%°% This dimensional
reduction approach may produce models that retain
the computational power of biological neurons, yet
are sufficiently simplified that they can be used in
large network models. The seeds of this important
future trend are already evident in the pioneering
work of Traub and colleagues (this issue’!). An
important technological trend will be the implemen-
tation of these realistic network models on massively
parallel computers.32,

Long-term potentiation in the hippocampus is
treated in detail in Seminars in the Neurosciences
(1990) volume 2, number 5, ‘Associative Long-
term Synaptic Chances’ edited by B. Gustafsson
and H. Wigstrém.
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