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Summary. Spike-wave and polyspike-wave activity in electroencephalogram are
waveforms typical of certain epileptic states. Automated detection of such patterns
would be desirable for automated seizure detection in both experimental and clinical
venues. We have developed a time-domain algorithm denominated SPUD to facilitate
data-mining of large electroencephalogram/electrocorticogram datasets to identify
the occurrence of spike-wave or other activity patterns. This algorithm feeds into our
enhanced Neural Query System [2]) database application to facilitate data-mining.
We have used our algorithm to identify and classify activity from both simulated
and experimental seizures.
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1 Introduction

There are vast databases of existing neural data which are growing in number
and size at an ever increasing rate. The data is of clinical and research sig-
nificance, but without the proper tools to sift through it, it is of limited use
[2] . Custom search, interpretation, and quantification methods are needed to
optimize the use of the data. These methods and search tools should allow
the investigator to visualize the available information in a clear and compre-
hensible manner, and allow him/her to find patterns that would be difficult
to see without the aid of a computer. These types of methods come under
the heading data-mining, informally defined as user-guided analysis of large
datasets using automated techniques. Ideally, data-mining methods should be
general enough to work for different types of neural data, i.e., simulated in
software, in vivo, and in vitro recordings, yet allow customizable options to
find relevant and particular patterns.
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We have developed an algorithm, named SPUD (mnemonic for slice, peak, up,
down — explained below), which successfully extracts useful features from dis-
parate types of neural data. It operates on signals in the time-domain, and
the features it extracts remain in the time-domain, providing exact timing
information for events of interest. This is in contrast to many popular signal
analysis algorithms, such as wavelets [1] or FFT (Fast Fourier transform [5]),
which operate mainly in the frequency-domain, and therefore, lack precise
timing information. For the detection of spike-wave (SW), algorithms operat-
ing in the frequency-domain may have difficulty, because the timing of SWs
is extremely precise. For example, a population spike, which is very brief,
may be followed by a wave, which is considerably longer-lasting. This type of
pattern may provide conflicting information in the frequency-domain because
spikes and waves are so close together in time.

The SPUD algorithm feeds the extracted features directly into the previously
developed Neural Query System (NQS)[12]. We enhanced NQS to allow for
standard structured query language (SQL[4]) queries by incorporating the
open source database MySQL (http://www.mysql.com). The versatile search
capabilities already provided by NQS, together with standard SQL, provides
for highly efficient and customizable search directly from the NEURON sim-
ulation environment [10, 3]. This makes it convenient for a researcher to run
simulations and analyze their results all in one familiar environment. Using
the developed techniques, we were able to find SW and polyspike-wave (PSW)
patterns in both simulated and in vivo recordings from Sprague Dawley rats.

2 Methods

2.1 Data-mining architecture

Database setup

The data of interest may either be read in directly to the database system
or run through a feature extraction algorithm. The feature extraction algo-
rithm simplifies the data by pulling out properties deemed to be useful for
the particular application. It allows viewing of the data at a higher level of
abstraction by ignoring irrelevant details and giving structure to the data.
The feature extraction algorithm we used, SPUD, is described below. Other
feature extraction algorithms fit into this pipeline and may be used in SPUD’s
place.
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Performing queries

Once the database is set up, the user can perform searches/queries on the data.
The query syntax is described below. The results returned by the database
system can be displayed visually with NQS’s (described below) graphical out-
put system and/or read into data structures of the hoc programming language
that is available with the NEURON simulation environment. This allows for
a bidirectional flow of information between the user and the database. Fig. 1
shows the data-mining architecture developed.

Fig. 1. Schematic of data-mining architecture. Arrows represent flow of information
in a given direction. Bi-directional information transfer occurs between the user and
the database (DB) system.

2.2 SPUD feature extraction algorithm

SPUD is a general algorithm for extracting information from signals in the
time-domain. It works on both noisy and clean data. It was originally in-
tended to work on signals obtained from simulations in the NEURON envi-
ronment, but performed equally well on experimental data obtained from in
vivo recordings of rats with electrocorticographic leads. One key design goal
was the ability of the algorithm to extract the information characterizing the
morphology and precise time properties of an arbitrary signal.

Steps of the algorithm

The SPUD algorithm is used to build a database of bump characteristics in
the time domain, where a bump is any deviation with return to the baseline.

The algorithm proceeds as follows:
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1. Slice the EEG/ECoG trace horizontally at logarithmically spaced voltage
levels. These levels are more finely spaced at lower voltage levels to capture
small bumps.

2. Iterate over slice positions in the horizontal direction to find matched
upward and downward crossing points.

3. Find peaks between crossing points to define slice traces as a triad: upward
crossing; peak; downward crossing.

4. Group slices with common peaks to define individual bumps.
5. Extract information about each bump. Information may include e.g., first

derivative of upstroke, first derivative of downstroke, amplitude, duration,
sharpness (defined below), start time, and others.

Fig. 2 shows bumps extracted from a sample trace.

10ms
50uV

Fig. 2. Schematic showing different steps of SPUD feature extraction algorithm on
recording from rat right occipital cortex. Horizontal lines are threshold locations.
Open triangles, circles, and squares represent left/upward crossing position, peak
position, and right/downward crossing position of bumps respectively. Note: some
bumps starting and ending points are at the same time location and therefore a
square and triangle marks them.

Bumps

The information extracted from the signal, which is defined as the sequence
of sampled time-ordered pairs (ti, si), takes the form of bumps. A bump,
b, is a section of the signal containing a deviation from the baseline value,
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Lm ∈ L (set of threshold lines), followed by a return to that value. Given
a series of samples in the signal, si, si+1, si+2, . . . si+n , occurring at times
ti, ti+1, ti+2, . . . ti+n , and a fixed horizontal baseline, Lm, a bump begins at
the first time signal pair, (tf , sf ), such that sf ≥ Lm. The bump consists of
the time-ordered set of pairs (tk, sk) such that sk ≥ Lm. The last pair, (tl, sl),
where sl ≥ Lm but sl+1 < Lm, defines the end of the bump. The next bump
in the set may begin at the next time the signal crosses Lm. For a bump b,
∀(tk, sk) ∈ b, tk ≥ tf , tk ≤ tl, sk ≥ Lm. For notational convenience (tf , sf )
, (tl, sl) , and (tp, sp) denote the first, last, and peak time/signal pairs in a
bump. A given bump Bi ∈ B ’s start, end, and peak time will be denoted
Bitf

, Bitl
, and Bitp respectively.

Bumps have properties associated with them which may include width
(tl − tf ), height from baseline (max(si − L) ), absolute peak value (max(si),
first derivative ( si−si−1

ti−ti−1
) at arbitrary positions within the bump, number of

nested bumps, etc. The properties may be easily extended and determined
algorithmically once the extents of the bump have been determined with the
default algorithm. The shape of the bumps can be anything from a single
action potential to the complex spiking patterns from extracellular recordings.

Thresholding

In order to extract only the significant bumps, a set of horizontal threshold
lines, L, is used to define the baselines where bumps deviate from. This set
of horizontal lines may be selected interactively by the user as it becomes
apparent where significant bumps occur. Initially it can be set to either linear
spacing, or logarithmic spacing. Further work needs to be done to algorithmi-
cally space the threshold lines in an optimal way depending on a given signal.
The linear and logarithmic spacings allow for more control of bump extrac-
tion for different types of signals. For example, use of logarithmic spacing
allows finer spacing at lower values of the signal, allowing for the extraction
of smaller bumps. In general, the minimum value of the signal determines a
value above which the first horizontal threshold line is placed and the maxi-
mum value determines a location below which the last threshold line is placed.
These threshold lines must be monotonically increasing.

Varying threshold lines

There are several options for specifying how to space the threshold lines.
Depending on the option chosen, the extracted bumps can be somewhat dif-
ferent. The default option is to space the lines logarithmically from 0.05 of
the maximum amplitude in the trace to 0.95 of the maximum amplitude. This
generally picks out the most significant bumps and smaller bumps that are
placed near the bottom of the trace due to the finer spacing there. Another
option which can yield better performance when the user’s focus is on the
middle of a trace, allows a fan-out logarithmic spacing whereby the start of
a logarithmically spaced set of threshold lines extends upward and downward
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from 0.5 of the maximum amplitude of the trace. The most simple option,
which does not allow for focusing in on any particular region is to space the
threshold lines linearly. In general, logarithmic spacing starting at a certain
vertical position will extract finer details in the surrounding region.The user
is also given the option of specifying his own threshold lines to narrow in on
activity of interest. Figure 3(A,B) shows the differences in resulting bumps
using 2 different sets of threshold slices.

Bump finding

Once the threshold lines, L, have been determined, they are traversed from the
lowest threshold line to the highest threshold line. Each threshold line, Lm,
is traversed in the horizontal direction from the start of the signal, (t0, s0),
to the end of the signal, (tn, sn), in a search for matched upward, peak, and
downward crossing points. To start the search for upward crossing points,
a point in the signal below the current threshold line (si < Lm) is found.
This point is the starting position for the search. The horizontal position
is incremented until the signal crosses the threshold (si ≥ Lm) line in an
upward direction. This horizontal point is then noted as the left-most point
of the first bump. The search then continues until a maxima is reached. This
point is noted. Once again, the search continues until the signal passes the
current threshold line in a downward direction (si ≤ Lm) and the point noted
as the right-most position of the current bump. In this fashion, each threshold
line is traversed with a triad of upward, peak, and downward crossing points
being extracted as the initial bumps.

Overlapping bumps

Since multiple threshold lines are used, the set of bumps found from the pre-
vious step, B, may be overlapping. This occurs with two bumps, Bi and Bj ,
when Bitf

≥ Bjtf
and Bitl

≤ Bjtl
. This means that Bi is entirely contained

within the time bounds of Bj . Overlapping also occurs when Bitf
≥ Bjtf

,
Bitf

≤ Bjtl
, and Bitl

> Bjtl
. There are two options for dealing with these

types of inevitabilities. The first, and simplest, is to allow overlapping bumps.
Though this is not the default behavior of the algorithm, for certain situa-
tions, this is the desired result, i.e., determining the # of nested bumps in a
signal/time interval. Overlapping bumps may also help determine the bounds
of low frequency, long duration bumps in the presence of high frequency com-
ponents. For example, in fig. 2, the first 6 low amplitude bumps are high
frequency fluctuations on a longer low frequency deflection. In other situa-
tions, overlapping bumps can have their starting and ending times adjusted.
This is done by grouping threshold slices with common peaks to define in-
dividual bumps. First, the bumps are traversed in increasing time order and
checked for overlaps on the left or right sides. A left overlap is defined as the
start of the current bump, being between the start and the peak time of the
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previous bump (Bctf
> Bc−1tf

and Bctf
< Bc−1tp

). In such a case, the thresh-
old lines are traversed from min(L) to max(L) to find the lowest threshold
containing a bump with the same peak time as the current bump’s peak time
and containing a starting time greater than the previous bump’s ending time
(all threshold lines have their associated bumps stored during initial bump
extraction). The current bump’s starting time is set as this threshold line’s
peak time. The same idea is used to check for and correct overlaps on the
right side.

Creeping

At this point there is a non-default option allowing a bump Bi ∈ B ’s Bitf

and Bitl
and associated signal values to creep to a local minima. This means

decreasing the starting time until it is a local minima, i.e., having a signal
value less than the surrounding signal values (si < si−1, si < si+1), and
increasing the starting time in a similar fashion. In certain situations, this
helps get a more accurate estimate of a bump’s time bounds, i.e., if a threshold
line is much higher than the local minima found by creeping.

Bump properties

Once the time bounds of the bumps have been set, the other properties of
a bump are extracted. The values we had the algorithm extract were: start
time, peak voltage amplitude, peak time location, time from start to finish
(width), sharpness, and when overlapping is allowed, the number of other
bumps nested within each bump’s start and end times. Others features can
be readily added. The sharpness was defined as (si−si−4)−(si+4−si) , where
si is the sample corresponding to the given bump’s peak time location. This
measure approximates the discretized 2nd derivative, but takes into account
more information from the surrounding values. It can easily be modified de-
pending on the intended usage. We also extracted the base voltage level of
the bump on its left and/or right side and as a result we were able to query
for the height of the bump, which is defined as peak voltage level minus base
voltage level.

Extracting upside-down bumps

Since extracellular field recordings have different properties when they are
displayed upside-down vs. right-side up, it is desirable to allow the user to
extract bumps from both the original trace and the inverted trace. This al-
lows for the extraction of dips, or inverted bumps, which will yield additional
information. Figure 3 shows the two possible sets of bumps extracted using
the normal, and the upside down version of the trace. Note that SPUD can
automatically extract both sets of bumps by setting a parameter.
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A

B

C

25uV
20ms

25uV
20ms

20ms
25uV

Fig. 3. Traces obtained by averaging all triplets of photic responses across 25 trials.
Spacing the threshold slices (horizontal lines) differently may result in different
bumps being extracted. Bump peaks represented as circles. Differences in extracted
bumps between sets in A and B slices highlighted by rectangles. (A) Logarithmic
spacing starting near bottom of trace. (B) Logarithmic spacing centered at middle
(fan-out). (C) Dips extracted as bumps by flipping trace over x-axis.
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Run-time complexity

A typical trace of neural data in our data set was sampled with a frequency on
the order of milliseconds and was recorded for at least a few seconds, typically
9. This results in a vector of 9000 time points and corresponding voltage levels.
The main portion of the SPUD algorithm is the traversal through each point
in a given trace, once for each threshold line, in the search for bumps. There
are typically 10 or so threshold lines, a number significantly smaller than the
number of points in a trace.

The extraction of a bump feature is taken to be approximately constant.
The number of bumps in a trace is also significantly less than the number of
points in a trace, usually by a 30-fold reduction or more (e.g., 300 bumps in
a 9000 millisecond trace).

The main steps of the algorithm consist of iterating over the threshold
lines for each time point and extracting bumps. Then for each bump, features
are extracted which has a constant cost. The time complexity of the algorithm
can therefore be approximated as |L| × |B| × |S| where |L| is the number of
threshold lines, |B| is the number of bumps found, and |S| is the number
of sampled points in a trace. When removing overlapping bumps, additional
terms proportional to |B|2 may be added to the run-time complexity. This
is because, for a single given bump, b ∈ B, overlapping with another bump,
the search for the modified starting/ending time is linear in |B| in the worst
case (the average will be far less). Since there are |B| bumps, this results
in an additional cost of |B|2. The total run-time complexity will then be
|L| × |S| × |B|+ |B|2 , with the dominating term being |S|. As a consequence
the algorithm will have an o(|S|) run-time. The results of a signal may be
analyzed many times in a data-mining framework and consequently, the run
time cost of bump extraction can be viewed as an amortized payment which
has returns each time a query is performed by the user.

In runtime complexity, SPUD is competitive with FFT which is θ(|S| × log (|S|))
[11], and with the the fast wavelet transform using the lifting scheme, which
is o(|S|) when using finite filters [15].

2.3 NQS and MySQL

Overview

The next step in our data-mining pipeline was storing the extracted bumps
and their associated information into the Neural Query System database as
well as a MySQL table to allow data-mining of features.

NQS

The Neural Query System (NQS) is a relational database system built into the
NEURON simulation environment. It allows storage of structured records and
a flexible search syntax on these records. It works seamlessly with NEURON’s
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data types, including Vectors, Lists, strings, scalars and neural or network
models. It also allows storage of sub-tables within tables. This is very handy
for storage of complex data types. NQS also provides for graphical display of
data, aiding in finding patterns in the data. Using NEURON with NQS, it
is possible to run large simulations and store partially analyzed data quickly
and easily from one environment.

MySQL

The MySQL database system (http://www.mysql.com/) has been in use for
over a decade and is open-source. It has a large user base familiar with Struc-
tured Query Language (SQL). Though NQS has an intuitive syntax and much
in common with SQL, there are differences in the details of the two query lan-
guages. Requiring users who already know SQL to learn NQS syntax is a
possible hindrance to fast learning of the data-mining system. Although NQS
has a convenient front-end and runs quickly on fast machines, it does not
have the benefit of more than a decade of open source contributions from
a wide community of programmers. For these reasons, we decided to create
an interface between NQS and MySQL that would maintain the strengths of
both systems — maintaining the ease of use of NQS and SQL, as well as the
optimizations available in MySQL.

NQS/MySQL Interface

The interface we created enhances NQS with the ability to perform standard
SQL queries using MySQL’s version of SQL. The interface was written with
the MySQL C application programmer interface (API) being translated into
blocks in NEURON’s NMODL language [9]. NMODL allows C code to be
compiled into the NEURON environment and then called once it is running.
The API we wrote connects directly to a MySQL database server from within
NEURON. This allows conversion of NQS databases to MySQL databases and
vice versa. It also allows for SQL queries to be performed on MySQL databases
and then reading the returned data into NEURON data types. Exchanging
data and queries between NQS and a MySQL server becomes quite easy. Once
the queries are done, the user may retrieve their results into an NQS table.

Function overview

The main interface consists of functions for connecting to the MySQL server
as well as performing queries. Once the queries have been made, their results
may be obtained with helper functions. These functions read the data directly
into NEURON data structures. There are other helper functions made to help
search tables in the database. A typical session in NEURON will consist of
connecting to the MySQL server and exchanging queries and data back and
forth. We also added some functions written in NEURON’s scripting language,
hoc, to allow for the conversion between NQS tables and MySQL tables easily,
as well as a function to help create MySQL tables programmatically. These
functions make it very easy to use MySQL and NQS together efficiently.
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2.4 Simulation setup

100ms

Fig. 4. Single trace from simulation. In this and following traces derived from
simulation, voltage is in arbitrary units.

The simulations were run in NEURON using tonic-clonic simulation net-
works previously described [13]. The networks consisted of 1350 neurons com-
prising three types of cells: spontaneously active cells (drivers), inhibitory
cells, and expressors (main excitatory cell population). 138,240 traces of ex-
tracellular field potentials were produced. Realistic patterns of activity, such
as SW, were present (a sample trace with SW activity is shown in figure
4). The traces were then stored in the NQS system along with the 8,205,557
bumps and corresponding features extracted with the SPUD algorithm. The
enhanced NQS system also converted the resulting database into a MySQL
database and indexed each column to allow for real-time/interactive searching
of the full dataset. Having to sift through such a massive set of data without
the aid of a flexible data-mining tool would have prohibitive time costs and
most likely introduce errors.

2.5 Rat data recording setup

Materials

Data was acquired from normal adult Sprague Dawley rats using BrainWare
(TDT), which employs an electrode channel window for electrophysiological
recording. We recorded the electrocorticogram (ECoG) at a sampling rate of
25kHz from a stainless steel wire placed on the dural surface over right occipi-
tal cortex; a second lead located over the cerebellum served as the differential
reference [16].
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125ms

200uV

1st PSW1st strobe

Fig. 5. ECoG response from photically-sensitized rat in response to a train of
stroboscopic flashes presented at 8 Hz. Vertical lines represent occurrence of strobe
flashes. The first flashes in the strobe train elicited a photic driving response that
morphed into PSW activity.

125ms

200uV
single
sw

Fig. 6. ECoG recording from right occipital cortex during a PTZ-induced seizure
with SW discharges.

Experimental conditions

There were two experimental conditions used for recording. In all recordings,
the rat was awake and moving freely.

Epileptiform behavior via photic-induced sensitization The first experimental
condition involved photic-induced sensitization following repeated exposure
to trains of stroboscopic flashes [16]. One strobe train consisted of 17 flashes
presented at 8Hz. Trains were presented every 30 seconds and 30-40 trains
were presented during a daily recording session. On initial train presentations,
the responses were small, showing at most an entrained sinusoidal driving
response. However, over the course of three sessions of strobe exposure, the
response grew in magnitude and acquired epileptiform characteristics like SW
morphology (Fig. 5).

Chemically-induced seizures The rat was injected with 24 mg/kg of pentylenete-
trazol (PTZ), a convulsant agent [7] . We started recording as soon as the rat
was injected. SW seizures appeared within 2-7 min of PTZ injection (Fig. 6).

Aritifact rejection In some of the recorded traces there were artifacts intro-
duced by the recording equipment or sudden animal movement. These arti-
facts were generally a voltage value of 0 or amplifier maximal value. There-
fore, before running our algorithms on these traces, we preprocessed them by
setting outliers/artifacts to an average of the surrounding voltage levels pro-
grammatically. Outliers were considered as any value that differed from the
median voltage level of that trace by a predetermined threshold. Our algo-
rithms and tools were then tested on several hundred of these preprocessed
traces.
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3 Results

3.1 Simulated data

Data-mining for SWs

Once the bumps and their corresponding information were stored in the
database, we were able to data-mine for patterns of interest. We were able
to use bump properties to classify the simulated EEG traces shown in figure
7A. A simple search looked for all traces with bumps having height above the
95th percentile, and sharpness above the 95th percentile. This was done by
first creating a table in NQS storing the percentile values of several properties
of interest such as height, sharpness, and number of bumps in a trace. Per-
centile tables were then created with a few function calls. Then the following
NQS query was used to select all traces having more than 3 bumps above the
95th percentile of height, and 3 bumps above the 30th percentile of sharpness:

sq.select("HE95" , ">" ,3, "SH30", ">" ,3, "NUM", "<" ,10)

This query was returned traces with spike-wave activity. Some results are
shown in figure 7. If it is most important to identify all seizures, a liberal
criteria is used in the search which will result in a potentially higher number
of false positives. On the other hand, a more conservative select is used in
order to collect a few clear seizures,

SQL SW select

An alternative approach to finding SW activity was to produce an enhanced
NQS/SQL query that returned times of spikes and times of waves. This was
done by selecting all bumps from a given trace having two consecutive bumps,
a and b, where a is a sharp, high amplitude spike, and b is a blunt, wide, and
relatively low amplitude bump. The following SQL query was used to find all
the spike and wave bumps satisfying these properties from a particular trace:

select b1.id, b2.id from bumps as b1, bumps as b2
where b1.peak > 1.33 * b2.peak and
b2.sharp < 200 and b2.width >= 15 and
b1.trace=6 and b2.trace=6 and
b1.id < b2.id and
abs(b1.id-b2.id) < 2 and
b1.sharp > 3312*1.5 and
b2.sharp < 3312/2 and
b1.sharp > 30*b2.sharp;

This query returns all 6 of the SWs from the given trace shown above in
figure 8.
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A

B

1000ms

Fig. 7. Simulation traces. (A) 100 traces of 1000ms duration each, from tonic-clonic
simulation described in methods section. There are many different types of patterns
in these traces, including SW activity. (B) Some of the traces returned with the NQS
percentile-based select described below. These traces were selected from the data set
of 138,240 simulation traces, some of which are shown in A.



Data-mining of time-domain features from neural extracellular field data 15

100ms

spike

wave

Fig. 8. This figure shows that all 6 SWs in the simulated EEG trace were returned
with the SQL select mentioned below. All spike peaks returned by the SQL select
are marked with open circles. All wave peaks are marked with open squares. As
shown, all of the SWs in the trace are found.

System performance

Using the SQL query above, the data-mining system was able to search
through the entire bump database, which is on the order of 8e6 bumps, and
return results in less than 1ms. This performance level is useful for a fast back
and forth between investigator and the data-mining system.

3.2 Rat data

Classification algorithms

To help find different types of activity patterns in the in vivo electrocor-
ticogram recordings of rat epileptiform activity several types of classification
algorithms were used on the bumps. One such application was in determining
whether a PSW occurred during a PPR response. This involved clustering the
time intervals based on their bump content. We also developed an algorithm
to determine the time bounds of the PTZ induced seizures by analyzing the
bump properties in a trace.

Clustering with k-means

Classifying time windows in traces into background activity vs. PSW is useful
for detecting the onset and duration of seizures and/or epileptiform activity.
We were able to use k-means clustering [14, 8] to classify intervals into two
classes. K-means used 4-D vectors consisting of the un-normalized maximal
bump width, height, peak, and sharpness from the bumps of a given interval.
The time intervals were cut to be 125ms, which is the time between successive
strobe flashes. Although PSWs typically occur in between strobe flashes, we
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did not limit the clustering solely to those intervals so that we would obtain
accurate background vs. PSW activity. When we only used the time intervals
between strobe flashes, the false positive/negative rates increased. Once the
k-means clustering was performed, there were two classes - one with a high
amplitude width, height, peak, and sharpness, and one with a significantly
lower amplitude of these values. Though k-means has an element of random-
ness in it, running it thousands of times helps ensure an accurate result. This
is done by choosing the cluster centroids that occur the majority of the time
as the final cluster centroids. All time intervals are classified accordingly. The
final centroids of the two classes came out with these ratios for the PSW/non-
PSW values : peak 1.67, width 2.75, sharpness 1.77, height 3.3. It is clear
from these ratios that the PSW intervals have significantly higher values of all
the properties used for classification. This difference in magnitude of the prop-
erties allowed the algorithm to determine which class had PSWs and which
did not.

The resultant clusters, shown in fig. 9, separating between PSW and non-
PSW intervals correlated well with the results of the algorithm described
below, providing a measure of cross-validation. The results were also visually
inspected for accuracy. Though certain intervals are mis-classified, overall the
method does well. Since the distinction between PSW and driving activity
is sometimes blurry, errors may be reduced by thresholding the results of a
fuzzy k-means algorithm [6]. However, there are certain sharp borders in this
classification scheme: based on visual inspection, PSWs detected outside of
the strobing windows are always false positives. An NQS select shows that
there are 21 PSW cycles detected outside of this time interval (before 3000ms
or after 5000ms) out of a total of 243 total PSW cycles detected. That is an
approximately 8.6% false positive rate. False negative rates are more difficult
to obtain due to the blurry border between PSW and non-PSW responses (see
discussion). More generally, the clustering of the time intervals may be viewed
as another step in the data-mining pipeline, where the researcher filters the
data sets to find ever more particular information. Though this method has
the additional information of optimal time window length, it may be possible
to dynamically determine this based on bump properties for other types of
traces.

Detecting time bounds of seizures

To detect the time bounds of the PTZ-induced seizures, we could not rely on
a clustering algorithm like k-means, because there were no predefined time
windows that would be guaranteed to work. Therefore we used a strategy
based on the fact that in general, the seizure regions of the trace consisted of
tall and wide bumps with other small bumps in intermediate positions. The
presence of seizures could then be indicated by positive deviations from the
mean width and height of the bumps in a trace by a certain factor. The first
step in detecting the seizure was iterating over the set of bumps and searching
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Fig. 9. K-means clustering on strobe data traces. Vertical lines indicate time win-
dows for bump analysis. Each time window is 125ms. Thick, dark lines represent
PSW type activity. Thinner lines indicate absence of PSWs. Length of each trace
is 9000ms. PSW activity begins shortly after onset of strobing. Vertical solid lines
represent time interval borders for clustering and 8Hz strobe times (between first
and last strobe only). (A) Full set of results. (B) Zoom in of portion of traces.
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for tall and wide bumps. These bumps were designated as seed bumps. The
qualifications for a seed bump that worked well for the PTZ seizures were that
the height be greater than 4.5× the mean height and the width be greater
than 3× the mean width. Once the seed bumps were found, we had a rough
estimate of where seizure activity was likely to occur. We next had to find
the extent of the seizure. To find where the seizure started and ended, we
determined positions to the left and right of the seed bump where the bumps
returned to baseline size for a selected time duration (50 ms in the current
analysis). This prevents misclassification due to small bumps occurring within
a seizure. To avoid false positives, we also had an option of excluding very
short seizures. This method was able to extract all of the significant seizures
from our initial data set. A few sample results are shown in fig. 10.

This algorithm performed well on the photic-induced epileptiform activity as
well (results shown in fig. 11), but we had to specify different parameters to the
algorithm, such as the deviation from mean bump width and height required
for a bump to qualify as a seed bump, as well as the minimum time span
required for baseline activity, which was reduced to 12.5 ms. The fact that
the algorithm performed well on various types of traces shows it has usefulness
as a general detection algorithm for epileptiform activity. The results of this
algorithm on the photic-induced epileptiform activity also correlated highly
with the results of the k-means clustering. This lends support to both methods
and to the feature extraction algorithm’s robustness. The run-time complexity
of this algorithm is essentially linear in the number of bumps in the time
interval being analyzed, since it essentially traverses the bumps in order.

Data-mining seizure properties

Once we had the PTZ seizures extracted we used data-mining to look for
different types of correlations between properties of bumps and properties of
seizures. For example, we found that the maximum bump height and width
of a PTZ-induced seizure had a positive correlation with the duration of the
seizure, with values of 0.856 and 0.819 respectively. This is shown in a scatter
plot in fig. 12.

4 Discussion

Data-mining system

The combination of the feature extraction algorithm and the NQS search
software, provides a powerful data-mining tool for finding patterns of interest.
The SPUD algorithm we developed is able to efficiently extract features of
interest in the time-domain. We have shown that more complicated frequency-
domain methods are not always needed. We have also shown that the data-
mining framework can be used with various ad hoc techniques to interact
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Fig. 10. Recordings from the rat’s right occipital cortex after PTZ administration.
Dark black lines indicate extents of seizures detected algorithmically. Each trace is
9000ms.

with the feature database and pull out interesting and physiologically complex
patterns. This was done with simple algorithms as well as with intuitive, easy
to use NQS/SQL selects. Once patterns were pulled out, it was possible to
find interesting correlations between different properties of the data sets.

Quantification of neural data

One of the goals of our quantitative analysis is to provide measures that
could be used to define what is to be considered a seizure and what is not.
There is no gold standard for seizure definition since there is a continuum
of electrographic activity appearance resulting in a large grey area where
abnormal activity might or might not be defined as epileptiform depending
on the criteria used. In order to estimate classification accuracy and error
rates in the future we would like to develop several criteria-sets that operate
along different dimensions and use these for cross validation.

Applications using extracted features

Using the features extracted with the SPUD algorithm it was also possible
to determine the time bounds of several different classes of activity including
PTZ-induced seizures and photic-induced epileptiform activity. This will have
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100ms
200uV

Fig. 11. Recordings from the rat’s right occipital cortex during strobing trials. Dark
black regions indicate extents of epileptiform activity detected algorithmically. Each
trace is 9000ms. Note high correlation between epileptiform activity detected here
and PSWs detected with k-means clustering (same data as Fig. 9).

both research and clinical usefulness. Clinical applications may involve a real-
time seizure detector that extracts features from recordings of an epileptic
patient and detects when they begin with algorithms similar to those here de-
veloped. Research applications include searching for the underlying features
of bumps occurring pre, post, and during seizures. This may shed light on
network and neuronal dynamics leading to seizure genesis. Future work will
involve the comparison of different classes of epileptiform activity, i.e., PTZ
vs. photic-induced, by quantifying differences in the bumps and their associ-
ated properties. We also plan on quantifying and tracking seizure genesis by
watching how bump properties change spatio-temporally.

Another future direction is extending the seizure detection algorithms de-
veloped to cover a wide class of seizures. Other types of neural activity may
also be analyzed using the feature extraction algorithms developed. Future
work may entail analyzing the correlations between activity properties in dif-
ferent brain regions as well as spatio-temporal patterns during specific be-
haviors. This may help uncover the interplay between different brain regions.
More generally, the feature extraction methods developed will help organize
the vast amounts of neuronal information currently available.



Data-mining of time-domain features from neural extracellular field data 21

200 450 700 950
0

100

200

300

A

4 8 12 16 20
0

100

200

300

B

se
iz

ur
e 

du
ra

tio
n 

(m
s)

max bump width (ms)

se
iz

ur
e 

du
ra

tio
n 

(m
s)

max bump height (uV)

Fig. 12. Correlations between bump properties during a PTZ-induced seizure and
the seizure properties. (A) Correlation between maximum bump height in a PTZ-
induced seizure vs. that seizure’s duration. Computed correlation coefficient was
0.856. (B) Correlation between maximum bump width in a PTZ-induced seizure vs.
that seizure’s duration. Computed correlation coefficient was 0.819.
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Frequency-domain measures

Frequency-domain measures from wavelet or Fourier analysis can be readily
added to the databases to provide a still richer information matrix for pattern
extraction. This added information may help in understanding neuronal data.
It may also reduce false positive/negative rates in pattern extraction algo-
rithms. Note that some of the attributes that we pull out in the time-domain,
particularly bump duration and sharpness, are correlates of frequency. This is
not a problem in data-mining: we have no need to eliminate redundancy and
simply seek to include as many features as may be useful.

Compression

Due to the large size of raw trace databases, and potentially limited storage
space, it may be desirable to store extracted features in place of full traces
for some applications. Corresponding segmental traces could be stored with
bump features to minimize loss of information. This can result in an order of
magnitude compression in addition to permitting arbitrary activity-pattern
searches to be done across large amounts of physiological data. Researchers
will be more likely to store their data in central repositories if they can be
readily stored and easily accessed.

5 Download

The software discussed is available at ModelDB:
http://senselab.med.yale.edu/ModelDB
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