Dopamine-based reinforcement learning of virtual arm reaching task in a
spiking model of motor cortex
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¢ Introduction

Our goal is to model learning and performance in
a target-reaching task. We use a spiking model
of primary motor cortex to direct a virtual arm
toward a target. The model learns by shaping
noise-driven “motor babble” into directed motions
using a reward / punisher algorithm based on
mechanisms from the dopaminergic reward
system. The spiking network model effectively
iImplements Thorndike's Law of Effect: the
proposition that rewards (punishers) make
stimulus->response mappings more (less) likely
to be triggered in the future.
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Overview of model and virtual arm system.
Only the forearm is allowed to rotate to move
the hand toward the target. The arm is driven
by a motor controller Actor which is trained by
a reward / punisher Critic to learn a
proprioceptive sensory->motor command

mapping.
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behaviors more likely. Punishment makes
them less likely.

Reaching performance best
for reward + punisher

A. Error vs. learning condition. B.
Reward + Punisher error vs. %

¢ Results
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Raster plot during 5 s simulation
under no-learning condition.

Reach to different targets
successful, but wiring-dependent
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Reach performance on 135 (top), 35
(middle), and O (bottom) degrees. A. Good;
B. Bad wiring random seed.
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A. 35->0 degree switch. B. 0->35
degree switch.
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A. Motor command for trained model vs. arm
angle. B. EM cell spiking at 25°. C. EM cell
spiking at 65°.

¢ Conclusions

* Both reward + punishment are
needed for adequate learning

* Babble allows trial-and-error
learning — plan to improve with
adaptive noise mechanism

* Plan extending model to include
cortical laminar structure
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